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ABSTRACT

Finding the shortest path distance between an arbitrary pair of

vertices is a fundamental problem in graph theory. A tremen-

dous amount of research has been successfully attempted on

this problem, most of which is limited to static graphs. Due to

the dynamic nature of real-world networks, there is a pressing

need to address this problem for dynamic networks undergoing

changes. In this paper, we propose an online incremental method

to efficiently answer distance queries over very large dynamic

graphs. Our proposed method incorporates incremental update

operations, i.e. edge and vertex additions, into a highly scalable

framework of answering distance queries. We theoretically prove

the correctness of our method and the preservation of labelling

minimality. We have also conducted extensive experiments on

12 large real-world networks to empirically verify the efficiency,

scalability, and robustness of our method.

1 INTRODUCTION

Given a very large graph with billions of vertices and edges, how

efficiently can we find the shortest path distance between any

two vertices? If such a graph is dynamically changing over time

(e.g. inserting edges or vertices), how can we not only efficiently

but also accurately find the shortest path distance between any

two vertices? These questions are intimately related to distance

queries on dynamic graphs. As one of the most fundamental oper-

ations on graphs, distance queries have awide range of real-world

applications that operate on increasingly large dynamic graphs,

such as context-aware search in web graphs [19], social network

analysis in social networks [5, 20], management of resources in

computer networks [6], and so on. Many of these applications use

distance queries as a building block to realise more complicated

tasks, and require distance queries to be answered instantly, e.g.

in the order of milliseconds.

Previous studies have primarily focused on distance queries

on static graphs [1–3, 10, 11, 13, 22], with little attention be-

ing paid to dynamics on graphs. To speed up query response

time, a key technique is to precompute a data structure called

distance labelling that satisfies certain properties such as 2-hop

cover [8], and then use this data structure to answer distance

queries efficiently. However, when a graph dynamically changes,

its distance labelling needs to be changed accordingly; otherwise,

distance queries may yield overestimated distances. Although it

is possible to recompute a distance labelling from scratch, this

leads to inefficiency. As shown in Figure 1, the percentage of

affected vertices by a single change often ranges from 10
−5
%

to 10% in various real-world networks, recomputing distance

labelling from scratch for each single change not only wastes
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Figure 1: Distribution of affected vertices by a single graph

change in various networks, where the results for 1000

graph changes are sorted in the descending order.

computing resources, but also may generate inaccurate query

results during recomputing process. The question arising is thus

how to efficiently and accurately change distance labelling on

dynamic graphs in order to support distance queries?

In this paper, we aim to develop an online incremental method

that can dynamically maintain distance labelling on graphs being

changed by edge and vertex insertions. Typically, real-world dy-

namic networks are more vulnerable to insertions than removals

and a plethora of such real-world networks are large and fre-

quently updated, primarily accommodating insertions [15, 21].

Thus, an online incremental method for dynamic graphs should

possess the following desirable characteristics: (1) time efficiency

- It can answer distance queries and update distance labelling

efficiently (in the order of milliseconds); 2) space efficiency - It

guarantees the minimum size of distance labelling to reduce stor-

age costs; (3) scalability - It can scale to very large networks with

billions of vertices and edges.

Challenges. Designing online incremental methods for distance

queries on dynamic graphs is known to be challenging [4]. When

an edge or a vertex is inserted into a graph, outdated and redun-

dant entries of distance labelling may occur. It was reported that

removing such entries is a complicated task [4] because affected

vertices need to be precisely identified so as to update their labels

without violating the original properties of a distance labelling

such as minimality. Further, although query time and update

time are both critical for answering distance queries on dynamic

graphs, it is not easy (if not impossible) to design a solution that

is efficient in both. This requires us to find new insights into

dynamic properties of a distance labelling, as well as a good

trade-off between query time and update time. Last but not least,

scaling distance queries to dynamic graphs with billions of nodes

and edges is hard. Previous work [4, 12] mostly considered 2-hop

labelling, which has very high space requirements and index con-

struction time; as a result, their query and update performance
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are dramatically degraded on large-scale dynamic graphs. Ide-

ally, the labelling size of a graph should be much smaller than

its original size. However, the state-of-the-art distance labelling

technique, i.e. pruned landmark labeling method (PLL) [4], still

yields a distance labelling whose size is 20-30 times larger than

the original size of a dataset.

Contributions. Our contributions are summarised as follows:

• Our method overcomes the challenge of eliminating out-

dated and redundant distance entries. None of the previous

studies have addressed this challenge because detecting

those entries is too costly [4, 9]. When an edge or a ver-

tex is inserted, previous studies only add new distance

entries or modify existing distance entries. This would

however lead to an ever increasing size of labelling, partic-

ularly when a graph is frequently updated by newly added

edges or vertices. Accordingly, both query performance

and space efficiency would deteriorate over time.

• We prove the correctness of our proposed method and

show that it preserves the desirable property of minimality

on our distance labelling. Due to a property called highway

cover [10], the minimal size of a distance labelling in this

work is much smaller than the size of a 2-hop labelling in

previous work [4, 12]. Preserving minimality on a distance

labelling thus improves space efficiency and query perfor-

mance, as well as update performance. We also provide a

complexity analysis of our proposed method.

• We conducted experiments using 12 real-world large net-

works across different domains to show the efficiency,

scalability and robustness of our method. Particularly, our

method can perform updates under one second, on aver-

age, even on billion-scale networks, while still answering

queries efficiently in the order of milliseconds and guar-

anteeing the labelling size of a graph to be much smaller.

2 RELATEDWORK

Answering shortest-path distance queries in graphs has been an

active research topic for many years. Traditionally, a distance

query can be answered using Dijkstra’s algorithm [18] on posi-

tively weighted graphs or Breadth-First Search (BFS) algorithm

on unweighted graphs. However, these traditional algorithms

fail to achieve desired response time for distance queries on large

graphs. Later, labelling-based methods have emerged as an at-

tractive way of accelerating response time to distance queries

[1–3, 8, 10, 11, 13], among which Akiba et al. [3] proposed a

pruned landmark labeling (PLL) to precompute a 2-hop cover

distance labelling [8]. This method serves as the state-of-the-art

for labelling-based distance queries and can handle graphs with

hundreds of millions of edges.

So far, only a few attempts have been made to study distance

queries over dynamic graphs [4, 12], which are all based on the

idea of 2-hop distance labelling or its variants. Akiba et al. [4]

studied the problem of updating a pruned landmark labelling for

incremental updates (i.e. vertex additions and edge additions).

This work however does not remove redundant entries in dis-

tance labels because the authors considered that detecting such

outdated entries is too costly. This inevitably breaks the mini-

mality of pruned landmark labelling, leading to an ever increase

of labelling size and deteriorated query performance over time.

To accelerate shortest-path distance queries on large networks,

another line of research is to combine a partial distance labelling

with online shortest-path searches. Hayashi et al. [12] proposed

a fully dynamic approach that selects a small set of landmarks 𝑅

and precompute a shortest-path tree (SPT) rooted at each 𝑟 ∈ 𝑅.
Then, an online search is conducted on a sparsified graph under

an upper distance bound being computed via the SPTs. Neverthe-

less, this method still fails to construct labelling on networks with

billions of vertices. Following the same line, a recent work by

Farhan et al. [10] introduced a highway-cover labelling method

(HL), which can provide fast response time (milliseconds) for

distance queries even on billion-scale graphs. However, this ap-

proach only works for static graphs.

3 PROBLEM FORMULATION

Let𝐺 = (𝑉 , 𝐸) be an undirected graph where𝑉 is a set of vertices

and 𝐸 is a set of edges. We denote by 𝑁 (𝑣) the set of neighbors of
a vertex 𝑣 ∈ 𝑉 , i.e. 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸}. Given two vertices

𝑢 and 𝑣 in𝐺 , the distance between𝑢 and 𝑣 , denoted as 𝑑𝐺 (𝑢, 𝑣), is
the length of the shortest path from 𝑢 to 𝑣 . If there does not exist

a path from 𝑢 to 𝑣 , then 𝑑𝐺 (𝑢, 𝑣) = ∞. We use 𝑃𝐺 (𝑢, 𝑣) to denote

the set of all shortest paths between 𝑢 and 𝑣 in 𝐺 . Given a graph

𝐺 = (𝑉 , 𝐸), an edge insertion is to add an edge (𝑎, 𝑏) into𝐺 where

{𝑎, 𝑏} ⊆ 𝑉 and (𝑎, 𝑏) ∉ 𝐸. Accordingly, a node insertion is to add

a new node into 𝐺 together with a set of edge insertions that

connect 𝑣 to existing vertices in𝐺 . The following fact is critical

for designing algorithms for an edge insertion.

Fact 3.1. Let𝐺 ′ = (𝑉 , 𝐸∪{(𝑢, 𝑣)}) be the graph after inserting
an edge (𝑢, 𝑣) into 𝐺 = (𝑉 , 𝐸). Then for any two vertices 𝑠, 𝑡 ∈ 𝑉 ,
𝑑𝐺 (𝑠, 𝑡) ≥ 𝑑𝐺′ (𝑠, 𝑡).

That is, the distance between any two vertices never increases

after inserting edges or vertices in a graph.

Highway cover labelling. Unlike the previous work [4, 9, 12]

that uses 2-hop cover labelling [8], we develop our method us-

ing a highly scalable labelling approach, called highway cover

labelling [10]. Let 𝑅 ⊆ 𝑉 be a small set of landmarks in a graph

𝐺 = (𝑉 , 𝐸). For each vertex 𝑣 ∈ 𝑉 , the label of 𝑣 is a set of distance

entries 𝐿(𝑣) = {(𝑟1, 𝛿𝐿 (𝑟1, 𝑣)), . . . , (𝑟𝑛, 𝛿𝐿 (𝑟𝑛, 𝑣))}, where 𝑟𝑖 ∈ 𝑅

and 𝛿𝐿 (𝑟𝑖 , 𝑣) = 𝑑𝐺 (𝑟𝑖 , 𝑣). We call 𝐿 = {𝐿(𝑣)}𝑣∈𝑉 a distance la-

belling over 𝐺 whose size is defined as: 𝑠𝑖𝑧𝑒 (𝐿) = ∑
𝑣∈𝑉 |𝐿(𝑣) |.

A highway 𝐻 = (𝑅, 𝛿𝐻 ) consists of a set 𝑅 of landmarks and a

distance decoding function 𝛿𝐻 : 𝑅 × 𝑅 → N+ such that, for any

two landmarks 𝑟1, 𝑟2 ∈ 𝑅, 𝛿𝐻 (𝑟1, 𝑟2) = 𝑑𝐺 (𝑟1, 𝑟2) holds.
Definition 3.2. A highway cover labelling is a pair Γ = (𝐻, 𝐿)

where 𝐻 is a highway and 𝐿 is a distance labelling s.t. for any

vertex 𝑣 ∈ 𝑉 \𝑅 and 𝑟 ∈ 𝑅, we have:
𝑑𝐺 (𝑟, 𝑣) = min{𝛿𝐿 (𝑟𝑖 , 𝑣) + 𝛿𝐻 (𝑟, 𝑟𝑖 ) | (𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑣)) ∈ 𝐿(𝑣)}. (1)

Highway cover labelling enjoys several nice theoretical prop-

erties, such as minimality and order independence. A minimal

highway cover labelling can be efficiently constructed, indepen-

dently of the order of applying landmarks [10].

Given a highway cover labeling Γ = (𝐻, 𝐿), an upper bound on
the distance between any two vertices 𝑢, 𝑣 ∈ 𝑉 \𝑅 is computed:

𝑑⊤𝑢𝑣 = min{𝛿𝐿 (𝑟𝑖 , 𝑢) + 𝛿𝐻 (𝑟𝑖 , 𝑟 𝑗 ) + 𝛿𝐿 (𝑟 𝑗 , 𝑣) |
(𝑟𝑖 , 𝛿𝐿 (𝑟𝑖 , 𝑢)) ∈ 𝐿(𝑢), (𝑟 𝑗 , 𝛿𝐿 (𝑟 𝑗 , 𝑣)) ∈ 𝐿(𝑣)} (2)

An exact distance query 𝑄 (𝑢, 𝑣, Γ) can be answered by con-

ducting a distance-bounded shortest-path search over a sparsified

graph 𝐺 [𝑉 \𝑅] (i.e., removing all landmarks in 𝑅 from 𝐺) under

the upper bound 𝑑⊤𝑢𝑣 such that:

𝑄 (𝑢, 𝑣, Γ) =
{
𝑑𝐺 [𝑉 \𝑅 ] (𝑢, 𝑣) if 𝑑𝐺 [𝑉 \𝑅 ] (𝑢, 𝑣) ≤ 𝑑⊤𝑢𝑣,

𝑑⊤𝑢𝑣 otherwise.
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Problem definition. In this work, we study the problem of

answering distance queries over a graph that is dynamically

changed by edge and vertex insertions over time. Since a vertex

insertion can be treated as a set of edge insertions, without loss of

generality, below we define the problem based on edge insertions.

Definition 3.3. Let 𝐺 ↩→ 𝐺 ′ denote that a graph 𝐺 is changed

to a graph𝐺 ′ by an edge insertion. The dynamic distance querying

problem is, given any two vertices 𝑢 and 𝑣 in the changed graph

𝐺 ′, to efficiently compute the distance 𝑑𝐺′ (𝑢, 𝑣).

4 ONLINE INCREMENTAL ALGORITHM

In this section, we propose an algorithm IncHL
+
to incrementally

update labelling to reflect graph changes. Algorithm 1 describes

the main steps of IncHL
+
. Below, we discuss them in detail.

4.1 Finding Affected Vertices

When an update operation occurs on a graph𝐺 = (𝑉 , 𝐸), there
exists a subset of “affected” vertices in𝑉 whose labels need to be

updated as a consequence of this update operation on the graph.

Definition 4.1. A vertex 𝑣 ∈ 𝑉 is affected by 𝐺 ↩→ 𝐺 ′ iff
𝑃𝐺 (𝑣, 𝑟 ) ≠ 𝑃𝐺′ (𝑣, 𝑟 ) for at least one 𝑟 ∈ 𝑅; unaffected otherwise.

We use Λ𝑟 to denote the set of all affected vertices w.r.t. a

landmark 𝑟 and Λ =
⋃

𝑟 ∈𝑅 Λ𝑟 the set of all affected vertices.

Example 4.2. Consider Figure 2(a) in which 0 and 10 are two

landmarks. After inserting an edge (2, 5), Λ0 = {5, 8, 9, 10, 13, 14}
in Figure 2(b) and Λ10 = {0, 1, 2} in Figure 2(d).

The following lemma states how affected vertices relate to an

edge being inserted.

Lemma 4.3. When𝐺 ↩→ 𝐺 ′ for an edge insertion (𝑎, 𝑏), a vertex
𝑣 ∈ Λ𝑟 iff there exists a shortest path between 𝑣 and 𝑟 in𝐺 ′ passing
through (𝑎, 𝑏).

Following Lemma 4.3, we can reduce the search space of

affected vertices by eliminating landmarks 𝑟 with 𝑑𝐺 (𝑟, 𝑎) =

𝑑𝐺 (𝑟, 𝑏) since Λ𝑟 = ∅ in such a case. Thus, we assume that

𝑑𝐺 (𝑟, 𝑏) > 𝑑𝐺 (𝑟, 𝑎) w.r.t. a landmark 𝑟 in the rest of this section

w.l.o.g. Further, by the lemma below, we can also reduce the

search space by “jumping” from the root of a BFS to vertex 𝑏.

Lemma 4.4. When 𝐺 ↩→ 𝐺 ′ with an inserted edge (𝑎, 𝑏), we
have 𝑑𝐺 (𝑣, 𝑟 ) ≥ 𝑑𝐺 (𝑎, 𝑟 ) + 1 for any affected vertex 𝑣 ∈ Λ𝑟 .

Proof. By Lemma 4.3, there exists a shortest path from any

affected vertex 𝑣 to 𝑟 going through the edge (𝑎, 𝑏) and thus

through 𝑎. Since 𝑎 is unaffected and the distance from 𝑎 to 𝑣 is

equal to or greater than 1, 𝑑𝐺 (𝑣, 𝑟 ) ≥ 𝑑𝐺 (𝑎, 𝑟 ) + 1 thus holds. □

Algorithm 2 describes our algorithm for finding affected ver-

tices. Given a graph𝐺 with an inserted edge (𝑎, 𝑏) and a highway
cover labelling Γ = (𝐻, 𝐿) over 𝐺 , we conduct a jumped BFS

w.r.t. a landmark 𝑟 starting from the vertex 𝑏 with its new depth

𝜋 = 𝑄 (𝑟, 𝑎, Γ) + 1 (Lines 3-4). For every (𝑣, 𝜋) ∈ Q, we enqueue
all the neighbors of 𝑣 that are affected into Q with new distances

𝜋 + 1 (Lines 7-8) and add 𝑣 to Λ𝑟 as affected vertex (Line 9). This

process continues until Q is empty.

Example 4.5. Figure 2 illustrates how our algorithm finds af-

fected vertices as a result of inserting an edge (2, 5). The BFS
rooted at landmark 0 is depicted in Figure 2(b), which jumps to

vertex 5 and finds six affected vertices {5, 8, 9, 10, 13, 14}. Simi-

larly, the BFS rooted at landmark 10 is depicted in Figure 2(d),

which jumps to vertex 2 and finds three affected vertices {0, 1, 2}.

Algorithm 1: Incremental algorithm (IncHL
+
).

Input: 𝐺 , 𝐺 ′, (𝑎, 𝑏), Γ = (𝐻, 𝐿)
Output: Γ′ = (𝐻 ′, 𝐿′)

1 foreach 𝑟 ∈ 𝑅 do

2 Λ𝑟 ← FindAffected(𝐺, (𝑎, 𝑏), 𝑟 , Γ)
3 RepairAffected(𝐺 ′, (𝑎, 𝑏),Λ𝑟 , 𝑟 , Γ)

Algorithm 2: Finding affected vertices.

1 Function FindAffected(𝐺 , (𝑎, 𝑏), 𝑟 , Γ)
2 Q ← ∅, Λ𝑟 ← ∅
3 𝜋 ← 𝑄 (𝑟, 𝑎, Γ) + 1
4 Enqueue (𝑏, 𝜋) to Q
5 while Q is not empty do

6 Dequeue (𝑣, 𝜋) from Q
7 foreach𝑤 ∈ 𝑁 (𝑣) s.t. 𝑄 (𝑟,𝑤, Γ) ≥ 𝜋 + 1 do
8 Enqueue (𝑤, 𝜋 + 1) to Q
9 Λ𝑟 = Λ𝑟 ∪ {𝑣}

10 return Λ𝑟

4.2 Repairing Affected Vertices

Now we propose a repair strategy to efficiently update the labels

of affected vertices in order to reflect graph changes. The key

idea is that, instead of conducting a full BFS on all vertices, we

conduct a partial BFS from 𝑏 only on affected vertices. Further,

to avoid unnecessary computations, we distinguish two kinds of

affected vertices: (1) affected vertices that are covered by other

landmarks and can thus be easily repaired by removing an entry

from their labels; (2) affected vertices whose labels need to be

repaired with accurately calculated distances on a changed graph.

The following lemma characterizes the first kind according to

the definition of highway cover labelling.

Lemma 4.6. An affected vertex 𝑣 ∈ Λ𝑟 is covered by a land-

mark 𝑟 ′ ∈ 𝑅\{𝑟 } iff 𝑟 ′ exists in 𝑃𝐺′ (𝑣, 𝑟 ). If an affected vertex

𝑣 ∈ Λ𝑟 is covered by 𝑟
′
, then any affected vertex 𝑣 ′ ∈ Λ𝑟 satisfying

𝑑𝐺′ (𝑟, 𝑣 ′) = 𝑑𝐺′ (𝑟, 𝑣) + 𝑑𝐺′ (𝑣, 𝑣 ′) must also be covered by 𝑟 ′.

By Lemma 4.6, we can efficiently repair affected vertices 𝑣 ∈ Λ𝑟

as follows. If 𝑣 is covered by a landmark 𝑟 ′ ∈ 𝑅\{𝑟 } (i.e., one of the
unaffected parents of 𝑣 does not contain 𝑟 in its label) and is also

a landmark, we only update the highway; otherwise, we remove

the entry of 𝑟 from 𝐿(𝑣). If 𝑣 is not covered by any 𝑟 ′ ∈ 𝑅\{𝑟 }, we
add/modify the entry of 𝑟 in 𝐿(𝑣). If 𝑣 is a descendant of covered
vertices, we simply remove the entry of 𝑟 from 𝐿(𝑣) (if exists).

Algorithm 3 describes our algorithm for repairing affected

vertices. Given a graph𝐺 with an inserted edge (𝑎, 𝑏) and a set of
affected vertices Λ𝑟 , we conduct a BFS w.r.t. a landmark 𝑟 starting

from the vertex 𝑏 with its new distance 𝜋 = 𝑑𝐺 (𝑟, 𝑎) + 1 (Lines
3-4). We use two queues Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 to process

uncovered and covered vertices, respectively. If 𝑏 is covered, we

enqueue (𝑏, 𝜋) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and remove the entry of 𝑟 from the

labels of affected vertices (Line 25). Otherwise, we enqueue (𝑏, 𝜋)
to Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 and start processing vertices in Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Line

5). For each vertex 𝑣 ∈ Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 at depth 𝜋 , we examine its

affected neighbors 𝑤 at depth 𝜋 + 1. If 𝑤 is covered, then if 𝑤

is a landmark, we update the highway (Line 10); otherwise we

remove the entry of 𝑟 from 𝐿(𝑤) (Line 12) because there must

exist another landmark in the shortest path from𝑤 to 𝑟 and add
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(c) (d)
Figure 2: An illustration of our online incremental algorithm IncHL

+
: (a) a graphwith three landmarks 0, 4 and 10 (colored

in yellow); (b) and (d) the BFSs for finding affected vertices (colored in green) w.r.t. landmarks 0 and 10, respectively; (c)

and (e) the BFSs for repairing affected vertices w.r.t. landmarks 0 and 10, respectively, where vertices with added/modified

entries are colored in blue, and vertices with removed entries are colored in red.

Algorithm 3: Repairing affected vertices.

1 Function RepairAffected(𝐺 ′, (𝑎, 𝑏), Λ𝑟 , 𝑟 , Γ)
2 Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ← ∅, Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ← ∅
3 𝜋 ← 𝑑𝐺 (𝑟, 𝑎) + 1
4 Enqueue (𝑏, 𝜋) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 if covered; otherwise to

Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑
5 while Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is not empty do

6 while (𝑣, 𝜋) ∈ Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 at depth 𝜋 do

7 forall𝑤 ∈ 𝑁 (𝑣) s.t.𝑤 ∈ Λ𝑟 at depth 𝜋 + 1 do
8 if 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (𝑤, 𝜋 + 1) then
9 if 𝑤 is a landmark then

10 𝛿𝐻 (𝑟,𝑤) ← 𝜋 + 1
11 else

12 Remove 𝑟 from 𝐿(𝑤)
13 Enqueue (𝑤, 𝜋 + 1) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑
14 else

15 Add/Modify {(𝑟, 𝜋 + 1)} in 𝐿(𝑤)
16 Enqueue (𝑤, 𝜋 + 1) to Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑
17 Remove𝑤 from Λ𝑟

18 Dequeue (𝑣, 𝜋) from Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑
19 while (𝑣, 𝜋) ∈ Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 at depth 𝜋 do

20 forall𝑤 ∈ 𝑁 (𝑣) s.t.𝑤 ∈ Λ𝑟 at depth 𝜋 + 1 do
21 Remove 𝑟 from 𝐿(𝑤)
22 Remove𝑤 from Λ𝑟

23 Enqueue (𝑤, 𝜋 + 1) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑
24 Dequeue (𝑣, 𝜋) from Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑

25 Remove entry 𝑟 from remaining vertices in Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑

(𝑤, 𝜋 + 1) to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Line 13). Otherwise, we add/modify the

entry of 𝑟 with the new distance 𝜋 + 1 in 𝐿(𝑤) and enqueue 𝑤

to Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Lines 15-16). After that, we remove 𝑤 from Λ𝑟

(line 17). Then, for each (𝑣, 𝜋) ∈ Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 , we remove 𝑟 from the

labels of affected neighbors of 𝑣 , remove these affected vertices

from Λ𝑟 and enqueue them to Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Lines 19-24). We process

these two queues, one after the other, until Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 is empty.

Finally, we remove the entry of 𝑟 from the labels of the remaining

vertices in Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 (Line 25).

Example 4.7. Figure 2 illustrates how our algorithm repairs

labels as a result of inserting an edge (2, 5). The BFS for landmark

0 is depicted in Figure 2(c), which jumps to vertex 5 and repairs

three affected vertices {5, 9, 10}. The vertices {8, 13, 14} are cov-
ered by landmarks 4 and 10. Similarly, the BFS for landmark 10 is

depicted in Figure 2(e), in which vertices {0, 2} are repaired and

vertex 1 is covered by landmarks 0 and 4.

5 THEORETICAL RESULTS

Proof of correctness. For 𝐺 ↩→ 𝐺 ′ where our method IncHL
+

updates a highway cover labelling Γ over𝐺 into a highway cover

labelling Γ′ over 𝐺 ′, we consider IncHL+ to be correct iff, when-

ever 𝑄 (𝑢, 𝑣, Γ) = 𝑑𝐺 (𝑢, 𝑣) holds for any two vertices 𝑢 and 𝑣 in

𝐺 , then 𝑄 (𝑢 ′, 𝑣 ′, Γ′) = 𝑑𝐺′ (𝑢 ′, 𝑣 ′) also holds for any two vertices

𝑢 ′ and 𝑣 ′ in 𝐺 ′. We prove the theorem below for IncHL
+
.

Theorem 5.1. IncHL
+
is correct.

Proof. First, we prove that FindAffected returns the set of
all affected vertices Λ𝑟 as a result of an edge insertion. IncHL

+

(Lines 7-8 of Algorithm 2) guarantees that any vertex being added

to Q has one shortest path to a landmark 𝑟 which goes through

the inserted edge (𝑎, 𝑏). By Lemma 4.3, such vertices are affected

vertices, and thus a vertex 𝑣 is added toQ in Algorithm 2 iff 𝑣 ∈ Λ𝑟 .

Then, we prove that RepairAffected repairs Γ = (𝐻, 𝐿) s.t. (1)
(𝑟, 𝑑𝐺′ (𝑟, 𝑣)) ∈ 𝐿(𝑣) for 𝑣 ∈ Λ𝑟 , iff 𝑃𝐺′ (𝑟, 𝑣) contains only one

landmark 𝑟 ; (2) 𝛿𝐻 (𝑟, 𝑟 ′) = 𝑑𝐺′ (𝑟, 𝑟 ′) for any 𝑟 ′ ∈ 𝑅\{𝑟 }. Starting
from 𝑏 with new distance 𝜋 , the distances of affected vertices in

Λ𝑟 are iteratively inferred on𝐺
′
and reflected into their labels via

Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 if these affected vertices are not covered (Lines 15-16

of Algorithm 3). If an affected vertex 𝑣 is covered, it is kept in

Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 ; if 𝑣 is also a landmark, 𝛿𝐻 (𝑟, 𝑣) in 𝐻 is updated (Lines

9-10). Thus, the distance entry of 𝑟 is removed from the labels

of affected vertices appearing in Q𝑐𝑜𝑣𝑒𝑟𝑒𝑑 , whereas any vertex 𝑣

appearing in Q𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 must have (𝑟, 𝑑𝐺′ (𝑟, 𝑣)) ∈ 𝐿(𝑣). □

Preservation of minimality. It has been reported in [10] that,

given a graph 𝐺 , a minimal highway cover labelling Γ = (𝐻, 𝐿)
of 𝐺 can be constructed using an algorithm proposed in their

work, i.e., 𝑠𝑖𝑧𝑒 (𝐿′) ≥ 𝑠𝑖𝑧𝑒 (𝐿) holds for any Γ′ = (𝐻, 𝐿′) of𝐺 . For

𝐺 ↩→ 𝐺 ′ where IncHL+ updates Γ over 𝐺 into Γ′ over 𝐺 ′, we
prove that IncHL

+
preserves the minimality of labelling.

Theorem 5.2. If Γ is minimal on 𝐺 , then Γ′ is minimal on 𝐺 ′.

Proof. By Lemma 4.6, (𝑟, 𝑑𝐺′ (𝑟, 𝑣)) ∈ 𝐿(𝑣) for 𝑣 ∈ Λ𝑟 iff

𝑃𝐺′ (𝑟, 𝑣) does not contain any other landmark 𝑅\{𝑟 }; otherwise
we remove the entry of 𝑟 from the label of 𝑣 (Line 12, 21 and

25 of Algorithm 3). Thus, the labels of all affected vertices must

be minimal after applying IncHL
+
. For unaffected vertices, their

labels should remain unchanged. Hence, Γ′ must be minimal. □

Complexity analysis. Let 𝑚 be the total number of affected

vertices, 𝑙 be the average size of labels (i.e. 𝑙 = 𝑠𝑖𝑧𝑒 (𝐿)/|𝑉 |), and
𝑑 be the average degree of vertices. For a landmark, Algorithm

2 takes 𝑂 (𝑚𝑑𝑙) time to find all affected vertices and Algorithm

3 takes 𝑂 (𝑚𝑑) to repair the labels of all affected vertices. We

omit 𝑙 from 𝑂 (𝑚𝑑) for Algorithm 3 because distances for all

unaffected neighbors of affected vertices are stored in Algorithm

2. Therefore, IncHL
+
has time complexity 𝑂 ( |𝑅 | ×𝑚𝑑𝑙). In our
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Table 1: Comparing the update time, query time and labelling size of our method with the baseline methods.

Dataset

Update Time (ms) Query Time (ms) Labelling Size

IncHL
+

IncFD IncPLL IncHL
+

IncFD IncPLL IncHL
+

IncFD IncPLL

Skitter 0.194 0.444 2.05 0.027 0.019 0.047 42 MB 153 MB 2.44 GB

Flickr 0.006 0.074 1.73 0.007 0.012 0.064 34 MB 152 MB 3.69 GB

Hollywood 0.031 0.101 48 0.027 0.037 0.109 27 MB 263 MB 12.58 GB

Orkut 2.026 2.049 - 0.101 0.103 - 70 MB 711 MB -

Enwiki 0.134 0.163 5.91 0.054 0.035 0.071 82 MB 608 MB 12.57 GB

Livejournal 0.245 0.268 - 0.044 0.046 - 122 MB 663 MB -

Indochina 5.443 158 2018 0.737 0.839 0.063 81 MB 838 MB 18.64 GB

IT 95.92 224 - 1.069 1.013 - 854 MB 4.74 GB -

Twitter 0.027 0.134 - 0.863 0.177 - 1.14 GB 3.83 GB -

Friendster 0.159 0.419 - 0.814 0.904 - 2.43 GB 9.14 GB -

UK 11.49 384 - 3.443 5.858 - 1.78 GB 11.8 GB -

Clueweb09 40.68 - - 16.93 - - 163 GB - -

Table 2: Summary of datasets.

Dataset Network |𝑉 | |𝐸 | avg. deg avg. dist

Skitter comp (u) 1.7M 11M 13.081 5.1

Flickr social (u) 1.7M 16M 18.133 5.3

Hollywood social (u) 1.1M 114M 98.913 3.9

Orkut social (u) 3.1M 117M 76.281 4.2

Enwiki social (d) 4.2M 101M 43.746 3.4

Livejournal social (d) 4.8M 69M 17.679 5.6

Indochina web (d) 7.4M 194M 40.725 7.7

IT web (d) 41M 1.2B 49.768 7.0

Twitter social (d) 42M 1.5B 57.741 3.6

Friendster social (u) 66M 1.8B 55.056 5.0

UK web (d) 106M 3.7B 62.772 6.9

Clueweb09 web (d) 1.7B 7.8B 9.27 7.4

experiments, we notice that𝑚 is usually orders of magnitudes

smaller than |𝑉 | and 𝑙 is also significantly smaller than |𝑅 |.

Directed and weighted graphs. For directed graphs, we can

store sets of forward and backward labels, namely 𝐿𝑓 (𝑣) and
𝐿𝑏 (𝑣), for each vertex 𝑣 which contain pairs (𝑟𝑖 , 𝛿𝑟𝑖 𝑣) from for-

ward and backward BFSs w.r.t. each landmark. Accordingly, we

can store forward and backward highways 𝐻𝑓 and 𝐻𝑏 . Then, we

conduct two BFSs to update these labels and highways: one in

the forward direction and the other in the backward direction.

Our method can also be easily extended to handling weighted

graphs by using Dijkstra’s algorithm instead of BFSs.

6 EXPERIMENTS

We have evaluated our method to answer the following questions:

(Q1) How efficiently can our method perform against state-of-the-

art methods? (Q2) How does the number of landmarks affect the

performance of our method? (Q3) How does our method scale to

perform updates occurring rapidly in large dynamic networks?

Datasets.We used 12 large real-world networks as detailed in Ta-

ble 2. These networks are accessible at Stanford Network Analysis

Project [16], Laboratory for web Algorithmics [7], Koblenz Net-

work Collection [14], and Network Repository [17]. We treated

these networks as undirected and unweighted graphs.

Updates and queries. For each network, we randomly sampled

1,000 pairs of vertices as edge insertions, denoted as 𝐸𝐼 , where

𝐸𝐼 ∩ 𝐸 = ∅ to evaluate the average update time. Further, we

evaluate the average query time with 100,000 randomly sampled

pairs of vertices from each network and report the labelling size

after reflecting all the updates.

Baseline methods. We compared our method (IncHL
+
) with

the state-of-the-art methods: (1) IncPLL: an online incremental

algorithm proposed in [4] which is based on the 2-hop cover

labelling to answer distance queries; (2) IncFD: an online incre-

mental algorithm proposed in [12] which combines a 2-hop cover

labelling with a graph traversal algorithm to answer distance

queries. The codes of these methods were provided by their au-

thors and implemented in C++. We used the same parameter

settings for these methods as suggested by their authors unless

otherwise stated. For a fair comparison, following [12] we set

|𝑅 | = 20 for IncFD and our methods, except for Clueweb09 which

has |𝑅 | = 150 due to its billion-scale vertices. Our methods were

implemented in C++11 and compiled using gcc 5.5.0 with the -O3

option. We performed all the experiments using a single thread

on Linux server (Intel Xeon W-2175 with 2.50GHz and 512GB of

main memory).

6.1 Performance Comparison

6.1.1 Update Time. Table 1 shows that the average update
time of our method IncHL

+
outperforms the state-of-the-art

methods IncFD and IncPLL on all datasets. This is due to a novel

repair strategy utilized by IncHL
+
. Further, only IncHL

+
can

scale to very large networks with billions of vertices and edges.

IncFD fails to scale to Clueweb09, and IncPLL fails for 7 out of

12 datasets due to very high preprocessing time and memory

requirements.

6.1.2 Labelling Size. From Table 1, we see that IncHL
+
has

significantly smaller labelling sizes than IncFD and IncPLL.When

updates occur on a graph, the labelling sizes of IncFD and IncHL
+

remain stable because their average label sizes are bounded by the

size of landmarks set (i.e. |𝑅 |). Moreover, IncFD stores complete

shortest path trees w.r.t. landmarks; while IncHL
+
stores pruned

shortest-path trees which lead to labelling of much smaller sizes

than IncFD. For IncPLL, the labelling sizes may increase because

IncPLL does not remove outdated and redundant entries.

6.1.3 Query Time. In Table 1 the query times of IncHL
+
are

comparable with IncFD and IncPLL. It has been shown in [9] that

query time depends on labelling size. As discussed in Section 6.1.2,

the update operations do not considerably affect the labelling

sizes of IncFD and IncHL
+
, and thus their query times remain

stable. However, the query times for IncPLL may increase over

time because of the presence of outdated and redundant entries,

which result in labelling of increasing size.
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Figure 3: Average update time of our method IncHL
+
(in colored bars) and the baseline method IncFD (in colored plus

grey bars) under 10-50 landmarks. There are no results of IncFD for Clueweb09 due to the scalability issue.
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Figure 4: Update time of IncHL
+
for performing up to 10,000 updates against construction time of labelling from scratch.

6.2 Performance with Varying Landmarks

Figure 3 shows the average update time of our method IncHL
+

against the baseline method IncFD under varying landmarks,

i.e., |𝑅 | ∈ [10, 20, 30, 40, 50]. As we can see, IncHL
+
outperforms

IncFD on all the datasets against almost every selection of land-

marks. We can also see the performance gap remains stable for

most of the datasets when increasing the number of landmarks.

This empirically verifies the efficiency of our repair strategy.

6.3 Scalability Test

We conducted a scalability test on the update time of our method

IncHL
+
, by starting with 500 updates and then iteratively adding

500 updates each time until 10,000 updates. Figure 4 shows the

results. We observe that the update time of IncHL
+
on almost

all the datasets is considerably below the construction time of

labelling. On Indochina and IT, IncHL
+
performs relatively worse

because these networks have large average distances as depicted

in Table 2, which lead to high percentages of affected vertices as

shown in Figure 1. In contrast, IncHL
+
performs well on graphs

with small average distances such as Twitter. Overall, IncHL
+

can scale to perform a large number of updates efficiently.

7 CONCLUSION

This paper has studied the problem of answering distance queries

on large dynamic networks. Our proposed algorithm exploits

properties of a recent labelling technique called highway cover

labelling [10] to efficiently process incremental graph updates,

and can preserve the minimality property of labelling after each

update operation. We have empirically evaluated the efficiency

and scalability of the proposed algorithm. The results show that

our proposed algorithm outperforms the state-of-the-art methods.

In future, we plan to further investigate the effects of decremental

updates on graphs since they are also commonly used in practice.
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