
Multiple-Source Context-Free PathQuerying in Terms of
Linear Algebra

Arseniy Terekhov
simpletondl@yandex.ru

Information Technologies,

Mechanics and Optics University

JetBrains Research

St. Petersburg, Russia

Vlada Pogozhelskaya
pogozhelskaya@gmail.com

Saint Petersburg State University

St. Petersburg, Russia

Vadim Abzalov
vadim.i.abzalov@gmail.com

Saint Petersburg State University

St. Petersburg, Russia

Timur Zinnatulin
teemychteemych@gmail.com

Saint Petersburg State University

St. Petersburg, Russia

Semyon Grigorev
s.v.grigoriev@spbu.ru

semyon.grigorev@jetbrains.com

Saint Petersburg State University

JetBrains Research

St. Petersburg, Russia

ABSTRACT

Context-Free Path Querying (CFPQ) allows one to express path

constraints in navigational graph queries as context-free gram-

mars. Although there are many algorithms for CFPQ developed,

no graph database provides full-stack support of CFPQ. The Azi-

mov’s CFPQ algorithm is applicable for real-world graph analyses,

as shown by Arseniy Terekhov. In this work we provide a modi-

fication to Azimov’s algorithm for multiple-source CFPQ which

makes the algorithmmore practical and eases the integration into

RedisGraph graph database. We also implement a Cypher graph

query language extension for context-free constraints. Thus we

provide the first full-stack support of CFPQ for graph databases.

Our evaluation shows that the provided solution is suitable for

real-world graph analyses.

1 INTRODUCTION

Language-constrained path querying [2] is a way to search for

paths in edge-labeled graphs where constraints are formulated

in terms of a formal language. The language restricts the set of

accepted paths: the sentence formed by the labels of a path should

be in the language. Regular languages are the most popular class

of constraints used as navigational queries in graph databases.

In some cases, regular languages are not expressive enough and

context-free languages are used instead. Context-free path query-

ing (CFPQ), can be used for RDF analysis [23], biological data

analysis [18], static code analysis [16, 24], and in other areas.

CFPQ have been studied a lot since the problemwas first stated

by Mihalis Yannakakis in 1990 [22]. Jelle Hellings investigates

various aspects of CFPQ in [6ś8]. A number of CFPQ algorithms

were proposed: (G)LL and (G)LR-based algorithms by Ciro M.

Medeiros et al. [12], Fred C. Santos et al. [17], Semyon Grigorev et

al. [5], and Ekaterina Verbitskaia et al. [20]; CYK-based algorithm

by Xiaowang Zhang et al. [23]; combinators-based approach to

CFPQ by Ekaterina Verbitskaia et al. [21]. Nevertheless, the appli-

cation of context-free constraints for real-world data analysis still

faces many problems. The first problem is bad performance of

the proposed algorithms on real-world data, as shown by Jochem

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the
24th International Conference on Extending Database Technology (EDBT), March
23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Kuijpers et al. [11]. The second problem is that no graph data-

base provides full-stack support of CFPQ, since most effort was

made in developing algorithms and researching their theoretical

properties. This fact hinders research of problems which can

be reduced to CFPQ, thus it hinders the development of new

solutions for them. For example, graph segmentation in data

provenance analysis was recently reduced to CFPQ [14], but the

evaluation of the proposed approach was complicated by the fact

that no graph database supported CFPQ.

Rustam Azimov proposed a matrix-based algorithm for CFPQ

in [1]. This algorithm provides a solution performant enough

for real-world data analyses, as shown by Nikita Mishim et al.

in [15] and Arseniy Terekhov et al. in [19]. This algorithm com-

putes reachability and provides a single path which satisfies

constraints for every vertex pair in the graph. Namely it solves

all-pairs context-free path querying problem. In many real-world

scenarios it is redundant to handle all possible pairs, instead one

can provide one or a relatively small set of start vertices.

While all-pairs context-free path querying is a problem well

studied, best to our knowledge, there is no solutions for the single-

source and multiple-source CFPQ. In this work we propose a

matrix-based multiple-source (and single-source as a partial case)

CFPQ algorithm and provide full-stack support of CFPQ based

on the proposed algorithm.

To sum up, we make the following contributions in this paper.

(1) We modify the Azimov’s matrix-based CFPQ algorithm

and provide a multiple-source matrix-based CFPQ algo-

rithm. As a partial case, it is possible to use our algorithm

in a single-source scenario. Our modification is still based

on linear algebra, hence it is simple to implement and

allows one to use high-performance libraries and utilize

modern parallel hardware for queries evaluation.

(2) We provide full-stack support of CFPQ by extending the

RedisGraph1 [3] graph database. To do it, we implement a

Cypher query language extension2 that makes it possible

to use context-free constraints, implemented the proposed

algorithm in a RedisGraph backend, and supported the

1RedisGraph graph database Web-page: https://redislabs.com/redis-enterprise/
redis-graph/. Access date: 19.07.2020.
2Proposal which describes path patterns specification syntax for Cypher
query language: https://github.com/thobe/openCypher/blob/rpq/cip/1.accepted/
CIP2017-02-06-Path-Patterns.adoc. The proposed syntax allows one to specify
context-free constraints. Access date: 19.07.2020.

Short Paper

Series ISSN: 2367-2005 487 10.5441/002/edbt.2021.56

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2021.56

new syntax in the RedisGraph query execution engine. As

far as we know, it is the first full-stack implementation

of CFPQ. Finally, we evaluate the proposed solution and

show that it is performant and memory-efficient enough

to be applicable for real-world graph querying.

2 PRELIMINARIES

In this section we introduce common definitions in graph theory

and formal language theory which are used in this paper. Also,

we provide a brief description of Azimov’s algorithm which is

used as a base of our solution.

2.1 Basic Definitions of Graph Theory

In this paper we use a labeled directed graph as a data model and

define it as follows.

Definition 2.1. Labeled directed graph is a tuple of six elements

𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸), where

• 𝑉 is a finite set of vertices. For simplicity, we assume that

the vertices are natural numbers ranging from 0 to |𝑉 | − 1.

• 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges.

• Σ𝑉 and Σ𝐸 are sets of labels of vertices and edges respec-

tively, such that Σ𝑉 ∩ Σ𝐸 = ∅.

• 𝜆𝑉 : 𝑉 −→ 2Σ𝑉 is a function that maps a vertex to a set of

its labels, which can be empty.

• 𝜆𝐸 : 𝐸 −→ 2Σ𝐸 \ {∅} is a function that maps an edge to

a non-empty set of its labels, so each edge must have at

least one label.

Labeled graph is the basis of the widely-used property graph

data model and allows one to use not only edge labels but also

vertex labels in navigation queries.

An example of the labeled directed graph 𝐷1 is presented in

figure 1. Here the sets of labels Σ𝑉 = {𝑥,𝑦} and Σ𝐸 = {𝑎, 𝑏, 𝑐, 𝑑}.

We omit the sets of vertex labels whenever they are empty.

0 : {𝑥,𝑦} 1

2 : {𝑥}3

5

4 : {𝑦}

{𝑎} {𝑏}

{𝑎, 𝑏}

{𝑐}

{𝑐}

{𝑐}

{𝑑}{𝑑}

Figure 1: The input graph 𝐷1

Definition 2.2. Path 𝜋 in the graph 𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸)

is a finite sequence of vertices and edges (𝑣0, 𝑒0, 𝑣1, 𝑒1, ..., 𝑒𝑛−1, 𝑣𝑛),

where ∀𝑖, 0 ≤ 𝑖 ≤ 𝑛 : 𝑣𝑖 ∈ 𝑉 ; ∀𝑗, 1 ≤ 𝑗 ≤ 𝑛 : 𝑒 𝑗 = (𝑣 𝑗 , 𝑣 𝑗+1) ∈ 𝐸.

Definition 2.3. An adjacency matrix 𝑀 of the graph 𝐷 is a

matrix of size |𝑉 | × |𝑉 |, such that

𝑀 [𝑖, 𝑗] =

{
𝜆𝐸 ((𝑖, 𝑗)) , (𝑖, 𝑗) ∈ 𝐸

∅ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The adjacency matrix𝑀 of the graph 𝐷1 (fig. 1) is the follow-

ing:

𝑀 =

©«

∅ {𝑎} ∅ ∅ ∅ ∅
∅ ∅ {𝑎, 𝑏} ∅ ∅ {𝑏}
∅ ∅ ∅ ∅ {𝑐} ∅
∅ ∅ {𝑐} ∅ ∅ ∅
∅ ∅ ∅ {𝑐} ∅ {𝑑}
∅ ∅ ∅ ∅ {𝑑} ∅

ª®®®®¬
.

Definition 2.4. Let 𝑀 be an adjacency matrix of the graph

𝐷 . Then the adjacency matrix of label 𝑙 ∈ Σ𝐸 of graph 𝐷 is a

matrix E𝑙 of size |𝑉 | × |𝑉 |, such that

E𝑙 [𝑖, 𝑗] =

{
1 , 𝑙 ∈ 𝑀 [𝑖, 𝑗]

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 2.5. A boolean decomposition of adjacency matrix 𝑀

of the graph 𝐷 is a set of Boolean matrices E = {E𝑙 | 𝑙 ∈ Σ𝐸 },

where E𝑙 is the adjacency matrix of label 𝑙 .

For example, the boolean decomposition of the adjacency ma-

trix𝑀 of the graph 𝐷1 is the set of matrices E𝑎, E𝑏 , E𝑐 , E𝑑 :

E𝑎 =

©«
. 1
. . 1 . . .
.
.
.
.

ª®®¬
, E𝑏 =

©«
.
. . 1 . . 1
.
.
.
.

ª®¬
,

E𝑐 =

©«

.

.

. . . . 1 .

. . 1 . . .

. . . 1 . .

.

ª®®¬
, E𝑑 =

©«

.

.

.

.

. 1

. . . . 1 .

ª®®¬
.

Definition 2.6. A vertex label matrix 𝐻 of the graph 𝐷 is a

matrix of size |𝑉 | × |𝑉 |, such that

𝐻 [𝑖, 𝑗] =

{
𝜆𝑉 (𝑖) , 𝑖 = 𝑗

∅ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑧𝑒

The vertex label matrix 𝐻 of the example graph 𝐷1 is

𝐻 =

©«

{𝑥,𝑦} ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ {𝑥} ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {𝑦} ∅
∅ ∅ ∅ ∅ ∅ ∅

ª®®®¬
.

Definition 2.7. Let 𝐻 be a vertex label matrix of graph 𝐷 . Then

the vertices matrix of label 𝑙 is a matrixV𝑙 of size |𝑉 | × |𝑉 |, such

that

V𝑙 [𝑖, 𝑗] =

{
1 , 𝑙 ∈ 𝐻 [𝑖, 𝑗]

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Definition 2.8. A boolean decomposition of vertex label matrix

𝐻 of the graph 𝐷 is the set of Boolean matricesV = {𝑉 𝑙 | 𝑙 ∈ Σ},

whereV𝑙 is a vertices matrix of label 𝑙 .

Vertex label matrix𝐻 of the graph 𝐷1 can be decomposed into

a set of the following Boolean matrices:

V𝑥
=

©«
1
.
. . 1 . . .
.
.
.

ª®®¬
, V𝑦

=

©«
1
.
.
.
. . . . 1 .
.

ª®®¬
.

2.2 Basic Definitions of Formal Languages

We use context-free grammars as paths constraints, thus in this

subsection we define context-free languages and grammars.

Definition 2.9. A context-free grammar 𝐺 is a tuple (𝑁, Σ, 𝑃, 𝑆),

where

• 𝑁 is a finite set of nonterminals

• Σ is a finite set of terminals, 𝑁 ∩ Σ = ∅

• 𝑃 is a finite set of productions of the form 𝐴→ 𝛼 , where

𝐴 ∈ 𝑁, 𝛼 ∈ (𝑁 ∪ Σ)∗

• 𝑆 is the start nonterminal

488

Definition 2.10. A context-free language is a language gener-

ated by a context-free grammar 𝐺 : 𝐿(𝐺) = {𝑤 ∈ Σ∗ | 𝑆
∗

==⇒
𝐺

𝑤}

Where 𝑆
∗

==⇒
𝐺

𝑤 denotes that a string𝑤 can be generated from a

starting non-terminal 𝑆 using a sequence of productions from 𝑃 .

Definition 2.11. A context-free grammar 𝐺 = (𝑁, Σ, 𝑃, 𝑆) is in

weak Chomsky normal form (WCNF) if every production in 𝑃 has

one of the following forms:

• 𝐴→ 𝐵𝐶 , where 𝐴, 𝐵,𝐶 ∈ 𝑁

• 𝐴→ 𝑎, where 𝐴 ∈ 𝑁, 𝑎 ∈ Σ

• 𝐴→ 𝜀, where 𝐴 ∈ 𝑁

Note that weak Chomsky normal form differs from Chomsky

normal form in the following:

• 𝜀 can be derived from any non-terminal;

• 𝑆 can occur in the right-hand side of productions.

The matrix-based CFPQ algorithms process grammars only

in weak Chomsky normal form, but every context-free grammar

can be transformed into the equivalent grammar in this form.

Consider the context-free grammar 𝐺1 = ({𝑆}, {𝑐, 𝑑,𝑦}, 𝑃, 𝑆),

where 𝑃 contains two rules: 𝑆 → 𝑐 𝑆 𝑑 ; 𝑆 → 𝑐 𝑦 𝑑 .

This grammar generates the context-free language:

𝐿(𝐺1) = {𝑐
𝑛𝑦𝑑𝑛, 𝑛 ∈ N}.

The following grammar 𝐺wcnf
1 is a result of the transformation

of 𝐺1 to weak Chomsky normal form:

𝑆 → 𝐶 𝐸 𝐸 → 𝑌 𝐷 𝐶 → 𝑐 𝐷 → 𝑑

𝑆 → 𝐶 𝑆1 𝑆1 → 𝑆 𝐷 𝑌 → 𝑦

2.3 Context-Free Path Querying

Definition 2.12. Let 𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸) be a labeled

graph,𝐺 = (𝑁, Σ𝑉 ∪ Σ𝐸 , 𝑃, 𝑆) be a context free grammar. Then a

context free relation with grammar 𝐺 on the labeled graph 𝐷 is

the relation 𝑅𝐺,𝐷 ⊆ 𝑉 ×𝑉 :

𝑅𝐺,𝐷 = {(𝑣1, 𝑣𝑛) ∈ 𝑉 ×𝑉 | ∃𝜋 = (𝑣1, 𝑒1, 𝑣2, . . . , 𝑒𝑛, 𝑣𝑛) ∈ 𝜋 (𝐷) :

𝑙 (𝜋) ∩ 𝐿(𝐺) ≠ ∅},

where 𝑙 (𝜋) ⊂ (Σ𝑉 ∪ Σ𝐸)
∗ is the set of labels along the path 𝜋 :

𝑙 (𝜋) = 𝜆𝑉 (𝑣1)
∗ · 𝜆𝐸 (𝑒1) · 𝜆𝑉 (𝑣2)

∗ · . . . · 𝜆𝐸 (𝑒𝑛) · 𝜆𝑉 (𝑣𝑛)
∗

For example, 𝜋 is a path from vertex 2 to vertex 5 in the labeled

graph presented in figure 1: 𝜋 = 2 : {𝑥}
{𝑐 }
−−−→ 4 : {𝑦}

{𝑑 }
−−−→ 5.

Labels along 𝜋 form the set of sequences 𝑙 (𝜋) = {𝑥𝑚𝑐𝑦𝑛𝑑 |

𝑛 ≥ 0,𝑚 ≥ 0}. Only one of these sequences satisfies context-free

constraints of the grammar𝐺1: 𝑐𝑦𝑑 . Hence 𝑙 (𝜋) ∩𝐿(𝐺1) ≠ ∅ and

the pair (3, 6) ∈ 𝑅𝐺1,𝐷 .

Note that the definition of path labels allows for zero or more

repetitions of a label of each vertex. This makes it possible to omit

vertex labels or, if there are many vertex labels, to use them in an

arbitrary order. It also permits to write a query which uses one

vertex label multiple times. This definition may appear strange in

some cases, but it depends on the semantics of the graph query

language. Semantics formalization is planned for a future work,

so we will stick to this definition in this paper.

Finally, we can define context-free path querying problem.

Definition 2.13. Context-free path querying problem is the prob-

lem of finding context-free relation 𝑅𝐺,𝐷 for a given directed

labeled graph 𝐷 and a context-free grammar 𝐺 .

In other words, the result of context-free path query evaluation

is a set of vertex pairs such that there is a path between them

and this path forms a word from the given language.

The context-free relation 𝑅𝐺1,𝐷1
for the graph 𝐷1 and the

context-free free grammar 𝐺1 is the following:

𝑅𝐺1,𝐷1
= {(2, 4), (2, 5), (3, 4), (3, 5), (4, 4), (4, 5)}.

Note that any relation 𝑅𝐺,𝐷 can be represented as a Boolean

matrix: 𝑇 [𝑖, 𝑗] = 1 ⇐⇒ (𝑖, 𝑗) ∈ 𝑅𝐺,𝐷 . In our example, 𝑅𝐺1,𝐷1

can be represented as follows:

𝑇 =

©«

.

.

. . . . 1 1

. . . . 1 1

. . . . 1 1

.

ª®®¬
.

Definition 2.14. Suppose 𝑆𝑟𝑐 is a given set of start vertices,

then multiple-source context-free path querying problem for the

given 𝑆𝑟𝑐 , directed labeled graph 𝐷 and context-free grammar 𝐺

is to find a context-free relation 𝑅𝑆𝑟𝑐
𝐺,𝐷
⊆ 𝑆𝑟𝑐 ×𝑉 ⊆ 𝑅𝐺,𝐷 . Thus

we restrict start vertices of the paths of interest to be vertices

from the given set.

As a special case, a single-source CFPQ is when 𝑆𝑟𝑐 is a sin-

gleton set. If we set 𝑆𝑟𝑐 = {2} in the previous example, then the

result is: 𝑅
{2}
𝐺1,𝐷1

= {(2, 4), (2, 5)}.

2.4 Matrix-Based Algorithm

Our algorithm is based on the Azimov’s CFPQ algorithm [1]

which is based onmatrix operations. This algorithm reduce CFPQ

to operations over Boolean matrices and as a result allows one to

use high-performance linear algebra libraries and utilize modern

parallel hardware for CFPQ. Moreover, utilization of Boolean

matrices simplifies the implementation of the algorithm.

Note, that the algorithm computes not only the context-free

relation 𝑅𝐺,𝐷 but also a set of context-free relations 𝑅𝐴,𝐷 ⊆

𝑉 ×𝑉 for every 𝐴 ∈ 𝑁 . Thus it provides information about paths

which form words derivable from any nonterminal in the given

grammar. Also, this algorithm handles only the edge labels.

Aswas shown byNikitaMishin et al. [15] andArseniy Terekhov

et al. [19], this algorithm can be implemented using various high-

performance programming techniques (including GPGPU uti-

lization), and it is applicable for real-world graph analysis. But

this algorithm solves all-pairs version of CFPQ: it finds all pairs

of vertices in the given graph, such that there exist a path be-

tween them which forms a word in the given language. Thus

it is impractical in cases when we are only interested in paths

which start from the specific set of vertices, especially if this set

is relatively small. Moreover, Azimov’s algorithm operates over

an adjacency matrix of the whole input graph, and as a result it

requires a huge amount of memory which may be a problem for

a real-world graph database.

3 MATRIX-BASED MULTIPLE-SOURCE

CFPQ ALGORITHM

In this sectionwe introduce amultiple-sourcematrix-based CFPQ

algorithm. This algorithm is a modification of Azimov’s matrix-

based algorithm for CFPQ and its core idea is to cut off those

vertices which are not in the selected set of start vertices.

Let 𝐺 = (𝑁, Σ, 𝑃, 𝑆) be the input context-free grammar, 𝐷 =

(𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸) be the input graph and 𝑆𝑟𝑐 be the input set

of start vertices. The result of the algorithm is a Boolean matrix

which represents relation 𝑅𝑆𝑟𝑐
𝐺,𝐷

.

489

Algorithm 1Multiple-source CFPQ algorithm

1: function MultiSrcCFPQNaive(

𝐷 = (𝑉 , 𝐸, Σ𝑉 , Σ𝐸 , 𝜆𝑉 , 𝜆𝐸) ,

𝐺 = (𝑁, Σ, 𝑃, 𝑆) , ⊲ Grammar in WCNF

𝑆𝑟𝑐)

2: 𝑇 ← {𝑇𝐴 | 𝐴 ∈ 𝑁,𝑇𝐴 [𝑖, 𝑗] ← false, for all 𝑖, 𝑗 }

3: 𝑇𝑆𝑟𝑐 ← {𝑇𝑆𝑟𝑐𝐴 | 𝐴 ∈ 𝑁,𝑇𝑆𝑟𝑐𝐴 [𝑖, 𝑗] ← false, for all 𝑖, 𝑗 }

4: for all 𝑣 ∈ 𝑆𝑟𝑐 do ⊲ Input matrix initialization

5: 𝑇𝑆𝑟𝑐𝑆 [𝑣, 𝑣] ← 𝑡𝑟𝑢𝑒

6: 𝑀𝑆𝑟𝑐 ← 𝑇𝑆𝑟𝑐𝑆

7: for all 𝐴→ 𝑥 ∈ 𝑃 | 𝑥 ∈ Σ𝐸 do ⊲ Simple rules initialization

8: for all (𝑣, 𝑡𝑜) ∈ 𝐸 | 𝑥 ∈ 𝜆𝐸 (𝑣, 𝑡𝑜) do

9: 𝑇𝐴 [𝑣, 𝑡𝑜] ← 𝑡𝑟𝑢𝑒

10: for all 𝐴→ 𝑥 ∈ 𝑃 | 𝑥 ∈ Σ𝑉 do

11: for all 𝑣 ∈ 𝑉 | 𝑥 ∈ 𝜆𝑉 (𝑣) do

12: 𝑇𝐴 [𝑣, 𝑣] ← 𝑡𝑟𝑢𝑒

13: while𝑇 𝑜𝑟 𝑇𝑆𝑟𝑐 𝑖𝑠 𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 do ⊲ Algorithm’s body

14: for all 𝐴→ 𝐵𝐶 ∈ 𝑃 do

15: 𝑀 ← 𝑇𝑆𝑟𝑐𝐴 ∗𝑇𝐵

16: 𝑇𝐴 ← 𝑇𝐴 +𝑀 ∗𝑇𝐶

17: 𝑇𝑆𝑟𝑐𝐵 ← 𝑇𝑆𝑟𝑐𝐵 +𝑇𝑆𝑟𝑐𝐴

18: 𝑇𝑆𝑟𝑐𝐶 ← 𝑇𝑆𝑟𝑐𝐶+ getDst(𝑀)

19: return𝑀𝑆𝑟𝑐 ∗𝑇𝑆

20: function getDst(𝑀)

21: 𝐴 [𝑖, 𝑗] ← false

22: for all (𝑣, 𝑡𝑜) ∈ 𝑉 2 | 𝑀 [𝑣, 𝑡𝑜] = 𝑡𝑟𝑢𝑒 do

23: 𝐴 [𝑡𝑜, 𝑡𝑜] ← 𝑡𝑟𝑢𝑒

24: return A

In order to solve the single-source and multiple-source CFPQ

problem, we modified the Azimov’s algorithm. Each time, when

a grammar rule is applied, only vertices of interest should be

stored. To do it, we added one more matrix multiplication: 𝑇𝐴
=

𝑇𝐴 + (𝑇𝑆𝑟𝑐𝐴 ·𝑇𝐵) ·𝑇𝐶 , where𝑇𝑆𝑟𝑐𝐴 is a matrix of start vertices

for the current iteration (lines 15-16 of the Algorithm 1). In the

end of each iteration of the for loop, it is necessary to update the

set of source vertices. To do it, we call the function getDst (see

lines 20-24), in line 18. Thus, the modified algorithm supports

the frontier of the vertices of interest and updates it on each

iteration. Thus, it only computes the paths which start from the

small set of selected vertices.

4 CFPQ FULL-STACK SUPPORT

To provide full-stack support of CFPQ, it is necessary to choose an

appropriate graph database. It was shown by Arseniy Terekhov

et al. [19] that matrix-based algorithm can be naturally inte-

grated into RedisGraph because the algorithm and the database

both operate over a matrix representation of graphs. Moreover,

RedisGraph supports Cypher as a query language and there is

a proposal which describes Cypher extension for context-free

constraints. Thus we chose RedisGraph as a base for our solution.

4.1 Cypher Extension

The first thing to do is to extend the Cypher parser to support the

context-free constraints. Tobias Lindaaker proposed an extension

for context free constraints to the Cypher syntax3, which is not

implemented in the Cypher parsers yet.

This extension introduces path patterns, which are a powerful

alternative to the original Cypher relationship patterns. Path

patterns allow one to express regular constrains over the basic

3Formal syntax specification: https://github.com/thobe/openCypher/blob/rpq/cip/1.
accepted/CIP2017-02-06-Path-Patterns.adoc#11-syntax. Access date: 19.07.2020.

Listing 2 Query based on the example grammar 𝐺1 written in

Cypher with path patterns

1: PATH PATTERN S = ()-/ [:c ∼S :d] | [:c (:y) :d] /->()

2: MATCH (v:x)-[:a | :c]->()-/ :b ∼S /->(to)

3: RETURN v, to

patterns such as relationship and node patterns. Like relationship

patterns, they can be specified in the MATCH clause.

The feature which allows one to specify context-free con-

straints is named path patterns: a path pattern can be assigned

a name which can be used in other patterns or within the same

pattern. Named patterns is defined in the PATH PATTERN clause.

Using this feature, the structure of queries is pretty similar to a

grammar in the Extended Backus-Naur Form (EBNF) [9].

An example of a query which uses named path patters is

presented in listing 2. This query is based on the context-free

grammar 𝐺1. Namely, the path pattern S specifies exactly the

same constraint as the grammar𝐺1. The MATCH clause consists of

the relation pattern [:a | :c] and the path pattern /:b ∼S/, and

this path pattern references the named pattern S. The constraint

specifies that a path of interest starts in a vertex labelled x, goes

through an edge labelled either a or c, then the rest of the path

is constrainted by a path pattern which starts with an edge b and

follows with a path matched with S. The RETURN clause specifies

what the result of the query is supposed to be. For the example

graph 𝐷1, this query returns the set of vertex pairs {(0, 4), (0, 5)}.

RedisGraph database supports a subset of the Cypher language

and uses libcypher-parser4 library to parse queries. We extend

this library with the new syntax described in the proposal. Note

that we implement5 the complete syntax extension, not only the

part necessary for simple CFPQ.

4.2 RedisGraph Extension

We implemented the multiple-source algorithm in the Redis-

Graph. We partially supported the proposed syntax extension in

RedisGraph query execution engine so that one can specify the

labels of edges and vertices and use named path patterns.

Processing the input as a whole may require a lot of mem-

ory. RedisGraph implements lazy evaluation: it creates execution

strategy in terms of elementary operations each of which pro-

cesses the input sequentially in chunks. This reduces memory

consumption so that it does not depend on the input size which

is crucial when dealing with big real-world graphs. However

processing chunks comes with a time overhead. By changing the

size of a chunk, a developer may adjust the ratio between the

time and memory consumption so that it fits their needs.

We use subsets of the start vertices as chunks since it is most

natural in the multiple source algorithm. We study how the size

of a chunk affects the performance in the evaluation.

4.3 Evaluation

For RedisGraph evaluation, we used a PC with Ubuntu 18.04

installed. It has Intel Core i7-6700 CPU, 3.4GHz, and DDR4 64Gb

RAM. RedisGraph with our extensions is installed6.

4The libcypher-parser is an open-source parser library for Cypher query
language. GitHub repository of the project: https://github.com/cleishm/
libcypher-parser. Access date: 19.07.2020.
5The modified libcypher-parser library with support of syntax for path patterns:
https://github.com/YaccConstructor/libcypher-parser. Access date: 19.07.2020.
6Sources of RedisGraph database with full-stack CFPQ support:https://github.com/
YaccConstructor/RedisGraph/tree/path_patterns_dev. Access date: 19.07.2020.

490

4.3.1 Data Preparation. We use the graphs and respective

queries 𝑔1 and 𝑔𝑒𝑜 from [19] to evaluate the RedisGraph-based

solution. The graphs are loaded into the RedisGraph database so

that each vertex has a unique property id in the range [0, . . . , |𝑉 |−

1], where |𝑉 | is a number of vertices in the graph to load. This

allows us to generate queries for a start vertex set with specific

size using templates. The template for the 𝑔1 query is provided

in listing 3. Here {id_from} and {id_to} are placeholders for

the lower and the upper bounds for id.

Listing 3 Cypher query pattern for 𝑔1

1: PATH PATTERN S =

()-/ [<:SubClassOf [∼S | ()] :SubClassOf]

| [<:Type [∼S | ()] :Type] /->()

2: MATCH (src)-/ ∼S /->()

3: WHERE {id_from} <= src.id and src.id <= {id_to}

4: RETURN count(*)

We implemented a query generator for the queries 𝑔1 and 𝑔𝑒𝑜

to create concrete queries for all the start sets which are used in

the previous experiment.

4.3.2 Evaluation Results. We use 𝑔𝑒𝑜 query for geospecies

graph as one of the hardest queries, and𝑔1 query for other graphs.

We measure time and memory consumption for each start set.

16 32 64 100 500 1000 5000 10000
Chunk size

0.2

0.4

0.6

0.8

1.0

1.2 geo

Ti
m

e
in

 se
c

Figure 2: RedisGraph performance on geospecies graph

16 32 64 100 500 1000 5000 10000
Chunk size

0.08

0.10

0.12

0.14

0.16

0.18

0.20 g1

Ti
m

e
in

 se
c

Figure 3: RedisGraph performance on eclass_514en graph

The execution time for all sets, except the set of size 10 000

for geospecies graph (fig. 2), is less than 1 second. Moreover, for

smaller graph (eclass_514en), processing time is less than 0.2

second for all chunks (fig. 2).

16 32 64 100 500 1000 5000 10000
Chunk size

5

10

15

20

25

30

35
g1

M
em

or
y

in
 M

b

Figure 4: Memory consumption on eclass_514en

32 64 100 500 1000 5000 10000
Chunk size

0

25

50

75

100

125

150

175 geo

M
em

or
y

in
 M

b

Figure 5: Memory consumption on geospecies

Memory consumption for the big graphs eclass_514en and

geospecies is presented in figures 4 and 5 respectively. The amount

of memory used depends on the graph and the query, but Re-

disGraph uses less that 50Mb of RAM to process graphs with

relatively small chunks (≤ 1000). Note that RedisGraph includes

memory management system, thus we measured all allocated

memory, not only the memory really used for the query eval-

uation. As a result, we can conclude that the multiple-source

CFPQ is significantly more memory efficient than creation of the

complete reachability index and its filtering: processing the set of

size 10 000 on geospecies graph requires less than 200Mb, while

full index creation requires 16Gb [19].

We also evaluate how chunking affects the performance on

the all-pairs reachability problem. We fix the size of a chunk

to be 1000 for graphs of different sizes and measure time and

memory required to process queries. Namely, we evaluate the

query which is similar to the query from the previous scenario,

but it does not constraint vertices ids (it does not have the WHERE

clause). We measure total processing time (in seconds) and total

required memory (in Mb). Also, we compare our solution with

the results of Arseniy Terekhov et al. from [19] in which the

Azimov’s algorithm was naively integrated with RedisGraph

without support of lazy query evaluation and query language.

Similar hardware and the same input graphs and queries were

used. Results are provided in table 1.

Although chunk-by-chunk processing is slower, it still requires

reasonable time. Moreover, if the chunk size is comparable with

the graph size (core and pathways graphs), then the execution

time is comparable with the monolithic processing. Thus one

can decrease execution time by increasing the chunk size. On

the other hand, even with relatively small chunks (eclass_514, go

and geospecies graphs), when for chunk-by-chunk processing is

491

Table 1: Full graph processing with chunks of size 1000

Graph #V #E Q
Chunks Mono [19]

T (sec) Mem (Mb) T (sec)

core 1323 4342 𝑔1 0.003 2 0.004

pathways 6238 18 598 𝑔1 0.031 6 0.011

gohierarchy 45 007 980 218 𝑔1 0.847 62 0.091

enzyme 48 815 109 695 𝑔1 0.698 13 0.018

eclass_514en 239 111 523 727 𝑔1 18.825 35 0.067

geospecies 450 609 2 311 461 𝑔𝑒𝑜 80.979 196 7.146

go 272 770 534 311 𝑔1 72.034 40 0.604

100 times slower, our results are still reasonable for some cases.

For example, it requires over 70 times less time for geospecies

graph processing than the solution of Jochem Kuijpers et al. [11]

which is based on Neo4j and requires more than 6000 seconds.

Moreover, while the solution from [19] requires huge amount of

memory (more than 16Gb for geospecies graph and 𝑔𝑒𝑜 query),

our solution requires only 196Mb. We argue, that our solution is

more suitable for general-purpose graph databases. First of all,

the core scenario when the set of start vertices is relatively small

can be handled efficiently. Second, all-pairs reachability, which

is not a massive case, can be solved in reasonable time with low

memory consumption. One can easily tune our solution to get the

optimal time and memory consumption for their specific case.

5 CONCLUSION AND FUTUREWORK

In this paper we propose a multiple-source modifications of Azi-

mov’s CFPQ algorithm and utilize it to provide full-stack support

of CFPQ. For our solution, we implement a Cypher extension as

a part of libcypher-parser, integrate the proposed algorithm

into RedisGraph, and extend RedisGraph execution plan builder

to support the extended Cypher queries. We demonstrate that

our solution is applicable for real-world graph analyses.

In the future, it is necessary to provide formal translation of

Cypher to linear algebra, or to determine a maximal subset of

Cypher which can be translated to linear algebra. There is a num-

ber of works on the translation of a subset of SPARQL to linear

algebra, such as [4, 10, 13]. Most of them are practical-oriented

and do not provide full theoretical basis to translate querying

language to linear algebra. Others discuss only partial cases and

should be extended to cover real-world query languages. Deep

investigation of this topic can help to determine the restrictions

of linear algebra utilization for graph databases.

ACKNOWLEDGEMENTS

The research was supported by the Russian Science Foundation,

grant№18-11-00100.

We thank Roi Lipman for his help with investigation of the

RedisGraph internals and pointing out the impractical memory

consumption of the original Azimov’s algorithm which gave us

the motivation to develop the presented solution.

We thank Ekaterina Verbitskaia for the fruitful discussion and

feedback which helped us to improve the paper.

REFERENCES
[1] Rustam Azimov and Semyon Grigorev. 2018. Context-free Path Querying by

Matrix Multiplication. In Proceedings of the 1st ACM SIGMOD Joint Interna-
tional Workshop on Graph Data Management Experiences & Systems (GRADES)
and Network Data Analytics (NDA) (GRADES-NDA ’18). ACM, New York, NY,
USA, Article 5, 10 pages. https://doi.org/10.1145/3210259.3210264

[2] C. Barrett, R. Jacob, and M. Marathe. 2000. Formal-Language-Constrained
Path Problems. SIAM J. Comput. 30, 3 (2000), 809ś837. https://doi.org/10.
1137/S0097539798337716 arXiv:https://doi.org/10.1137/S0097539798337716

[3] P. Cailliau, T. Davis, V. Gadepally, J. Kepner, R. Lipman, J. Lovitz, and K.
Ouaknine. 2019. RedisGraph GraphBLAS Enabled Graph Database. In 2019
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 285ś286.

[4] Roberto De Virgilio. 2012. A Linear Algebra Technique for (de)Centralized
Processing of SPARQL Queries. In Conceptual Modeling, Paolo Atzeni, David
Cheung, and Sudha Ram (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
463ś476.

[5] Semyon Grigorev and Anastasiya Ragozina. 2017. Context-free Path Querying
with Structural Representation of Result. In Proceedings of the 13th Central
& Eastern European Software Engineering Conference in Russia (CEE-SECR
’17). ACM, New York, NY, USA, Article 10, 7 pages. https://doi.org/10.1145/
3166094.3166104

[6] Jelle Hellings. 2014. Conjunctive context-free path queries. In Proceedings of
ICDT’14. 119ś130.

[7] Jelle Hellings. 2015. Path Results for Context-free Grammar Queries on Graphs.
CoRR abs/1502.02242 (2015). arXiv:1502.02242 http://arxiv.org/abs/1502.02242

[8] Jelle Hellings. 2015. Querying for Paths in Graphs using Context-Free Path
Queries. arXiv preprint arXiv:1502.02242 (2015).

[9] ISO/IEC. 1996. International Standard EBNF Syntax Notation.
http://www.iso.ch/cate/d26153.html. 14977 edn. Online.

[10] Fuad Jamour, Ibrahim Abdelaziz, and Panos Kalnis. 2018. A Demonstration
of MAGiQ: Matrix Algebra Approach for Solving RDF Graph Queries. Proc.
VLDB Endow. 11, 12 (Aug. 2018), 1978ś1981. https://doi.org/10.14778/3229863.
3236239

[11] Jochem Kuijpers, George Fletcher, Nikolay Yakovets, and Tobias Lindaaker.
2019. An Experimental Study of Context-Free Path Query Evaluation Methods.
In Proceedings of the 31st International Conference on Scientific and Statistical
Database Management (SSDBM ’19). ACM, New York, NY, USA, 121ś132.
https://doi.org/10.1145/3335783.3335791

[12] Ciro M. Medeiros, Martin A. Musicante, and Umberto S. Costa. 2018. Efficient
Evaluation of Context-free Path Queries for Graph Databases. In Proceedings
of the 33rd Annual ACM Symposium on Applied Computing (SAC ’18). ACM,
New York, NY, USA, 1230ś1237. https://doi.org/10.1145/3167132.3167265

[13] Saskia Metzler and Pauli Miettinen. 2015. On Defining SPARQL with Boolean
Tensor Algebra. CoRR abs/1503.00301 (2015). arXiv:1503.00301 http://arxiv.
org/abs/1503.00301

[14] H. Miao and A. Deshpande. 2019. Understanding Data Science Lifecycle
Provenance via Graph Segmentation and Summarization. In 2019 IEEE 35th
International Conference on Data Engineering (ICDE). 1710ś1713.

[15] Nikita Mishin, Iaroslav Sokolov, Egor Spirin, Vladimir Kutuev, Egor Nem-
chinov, Sergey Gorbatyuk, and Semyon Grigorev. 2019. Evaluation of the
Context-Free Path Querying Algorithm Based on Matrix Multiplication. In
Proceedings of the 2Nd Joint International Workshop on Graph Data Manage-
ment Experiences & Systems (GRADES) and Network Data Analytics (NDA)
(GRADES-NDA’19). ACM, New York, NY, USA, Article 12, 5 pages. https:
//doi.org/10.1145/3327964.3328503

[16] Jakob Rehof and Manuel Fähndrich. 2001. Type-Base Flow Analysis: From
Polymorphic Subtyping to CFL-Reachability. SIGPLAN Not. 36, 3 (Jan. 2001),
54ś66. https://doi.org/10.1145/373243.360208

[17] Fred C. Santos, Umberto S. Costa, and Martin A. Musicante. 2018. A Bottom-
Up Algorithm for Answering Context-Free Path Queries in Graph Databases.
In Web Engineering, Tommi Mikkonen, Ralf Klamma, and Juan Hernández
(Eds.). Springer International Publishing, Cham, 225ś233.

[18] Petteri Sevon and Lauri Eronen. 2008. Subgraph Queries by Context-free
Grammars. Journal of Integrative Bioinformatics 5, 2 (2008), 157 ś 172. https:
//doi.org/10.1515/jib-2008-100

[19] Arseniy Terekhov, Artyom Khoroshev, Rustam Azimov, and Semyon Grigorev.
2020. Context-Free Path Querying with Single-Path Semantics by Matrix
Multiplication. In Proceedings of the 3rd Joint International Workshop on Graph
Data Management Experiences & Systems (GRADES) and Network Data Ana-
lytics (NDA) (GRADES-NDA’20). Association for Computing Machinery, New
York, NY, USA, Article 5, 12 pages. https://doi.org/10.1145/3398682.3399163

[20] Ekaterina Verbitskaia, Semyon Grigorev, and Dmitry Avdyukhin. 2016. Re-
laxed Parsing of Regular Approximations of String-Embedded Languages.
In Perspectives of System Informatics, Manuel Mazzara and Andrei Voronkov
(Eds.). Springer International Publishing, Cham, 291ś302.

[21] Ekaterina Verbitskaia, Ilya Kirillov, Ilya Nozkin, and Semyon Grigorev. 2018.
Parser Combinators for Context-free Path Querying. In Proceedings of the
9th ACM SIGPLAN International Symposium on Scala (Scala 2018). ACM, New
York, NY, USA, 13ś23. https://doi.org/10.1145/3241653.3241655

[22] Mihalis Yannakakis. 1990. Graph-theoretic Methods in Database Theory.
In Proceedings of the Ninth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS ’90). ACM, New York, NY, USA, 230ś242.
https://doi.org/10.1145/298514.298576

[23] Xiaowang Zhang, Zhiyong Feng, Xin Wang, Guozheng Rao, and Wenrui Wu.
2016. Context-Free Path Queries on RDF Graphs. In The Semantic Web ś ISWC
2016, Paul Groth, Elena Simperl, Alasdair Gray, Marta Sabou, Markus Krötzsch,
Freddy Lecue, Fabian Flöck, and Yolanda Gil (Eds.). Springer International
Publishing, Cham, 632ś648.

[24] Xin Zheng and Radu Rugina. 2008. Demand-driven Alias Analysis for C. In
Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL ’08). ACM, New York, NY, USA, 197ś208.
https://doi.org/10.1145/1328438.1328464

492

	Multiple-Source Context-Free Path Querying in Terms of Linear AlgebraArseniy Terekhov, Vlada Pogozhelskaya, Vadim Abzalov, Timur Zinnatulin, Semyon Grigorev

