
JupySim: Jupyter Notebook Similarity Search System
Misato Horiuchi

Osaka University, Japan

horiuchi.misato@ist.osaka-u.ac.jp

Yuya Sasaki

Osaka University / JST PRESTO, Japan

sasaki@ist.osaka-u.ac.jp

Chuan Xiao

Osaka University, Japan

chuanx@ist.osaka-u.ac.jp

Makoto Onizuka

Osaka University, Japan

onizuka@ist.osaka-u.ac.jp

ABSTRACT
Computational notebooks such as Jupyter notebooks are popular

for machine learning and data analytic tasks. Numerous computa-

tional notebooks are available on the Web and reusable; however,

searching for computational notebooks manually is a tedious

task and so far there are no tools to search for computational

notebooks effectively and efficiently. In this paper, we develop

JupySim, which is a system for similarity search on Jupyter note-

books. In JupySim, users specify contents (codes, tabular data,

libraries, and formats of outputs) in Jupyter notebooks as a query,

and then retrieve top-𝑘 Jupyter notebooks with the most similar

contents to the given query. The characteristic of JupySim is that

the queries and Jupyter notebooks are modeled by graphs for

capturing the relationships between codes, data, and outputs.

JupySim has intuitive user interfaces that the users can specify

their targets of Jupyter notebooks easily. Our demonstration sce-

narios show that JupySim is effective to find Jupyter notebooks

shared on Kaggle for data science.

1 INTRODUCTION
Many users currently use computational notebook software such

as Google Colab and Amazon SageMaker for machine learning

and data analytic tasks. They interactively conduct various data

processing, for example, data cleaning, analysis, optimization,

and visualization. Due to the increasing popularity of computa-

tional notebooks, numerous computational notebooks are avail-

able and reusable on the Web, such as GitHub and Kaggle [5].

Motivation. We often search for computational notebooks to

reuse them for our own data science tasks and to learn program-

ming skills from them. When searching for the computational

notebooks, we want computational notebooks including similar
contents to what we specify, i.e., codes, data, libraries, and/or

output formats. For example, we look for computational note-

books analyzing similar data to our data and using libraries and

functions that we would like to learn.

However, there are no effective and efficient solutions to search-

ing for similar computational notebooks. We need to consider

two characteristics of computational notebooks; (1) unclear run-

ning orders of cells (and cells are often skipped) and (2) including

analytic datasets. As preliminary experiments, we evaluated the

accuracy and efficiency of existing methods for Jaccard-based

similar code search [3] and tabular data search [7]. Table 1 shows

nDCG@15 (based on user experiments) and search time to find

top-10 similar computational notebooks. We can see that existing

works are inaccurate because they cannot consider the entire

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Table 1: Preliminary results
Method Code sim Data sim Combined JupySim
nDCG 0.61 0.35 0.66 0.77

Search time [sec] 1.58 21.40 22.98 21.92

contents of computational notebooks, such as codes and tabular

data. If we rank the computational notebooks according to code

similarity evaluated by users, the nDCG is 0.763, which indicates

the upperbound of accuracy on similar code search methods with-

out considering tabular data. When we combine their results, the

accuracy slightly increases but it takes more time, because we

need to conduct two searches individually. From the preliminary

experiments, we confirmed that existing works are not suitable

for similarity search on computational notebooks.

Contribution. In this paper, we develop JupySim, which is a

system for similarity search on Jupyter notebooks
1
. JupySim aims

to find the top-𝑘 Jupyter notebookswith themost similar contents

(including codes, tabular data, libraries, and output formats) to the

contents specified by a given query. It provides a Web interface

through which users can interactively search for similar Jupyter

notebooks by freely inputting/loading/saving queries.

Our work has two technical novelties. First, we define the simi-

larity of computational notebooks that captures the relationships

between contents (e.g., order of running cells and reading/updat-

ing datasets). We represent computational notebooks by graphs.

Second, we reduce the problem of similar computational note-

book search to subgraph matching, which leads efficient searches

(see Table 1).

For demonstrating our system, we use Jupyter notebooks

shared on Kaggle competitions. We prepare three demonstration

scenarios to show that JupySim helps to learn how to analyze

our own tabular data, how to use libraries, and how to imple-

ment data preprocessing, respectively. We provide the source

code of our demonstration, demonstration movies, and detailed
experimental results at our Github repository

2
.

Related work. Similarity search methods for source codes [2, 4]

and tabular data [6, 7] are actively studied. However, to the best

of our knowledge, there are no methods that can be applied to

computational notebooks directly. In particular, there are no ex-

isting works to define the similarity of computational notebooks

and/or collect similarity scores given by people. This causes the

difficulty to use machine learning-based methods (e.g., [4]) be-

cause they require the pre-defined similarities (e.g., scoring by

people and similarity functions) to train machine learning mod-

els. We here note that our system is modular; it can use existing

methods as similarity functions for contents.

1
Jupyter notebook (formerly called IPython) is the most popular computational

notebook, which is used on Amazon SageMaker and Google Colab.

2
https://github.com/OnizukaLab/Similarity_Search_on_Computational_

Notebooks

Demonstration Paper

Series ISSN: 2367-2005 554 10.48786/edbt.2022.49

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.49

EDBT 2022, 29th March-1st April, 2022, Edinburgh, UK Misato Horiuchi, Yuya Sasaki, Chuan Xiao, and Makoto Onizuka
2020/12/24 eda-on-indian-cuisine - Jupyter Notebook

localhost:8888/notebooks/eda-on-indian-cuisine.ipynb 1/1

�� ����

�� ����

�� ����

�������

����������������������������������

�������������������
������������������
�������������������������������
���������������������
���������������������������
���������������������������������
���

������������������������
��������������������������

��

���

��
����������������������

��
����������������������

�

Code

Data

Output

Code

Code

Code2

Data1

Output1

Code3

Code1

Figure 1: An example of Jupyter notebook (left side) and
corresponding DAG (right side)

2 COMPUTATIONAL NOTEBOOK SEARCH
We formalize our problem after defining computational note-

books. Please see our extended report for technical details [1].

2.1 Preliminary
A computational notebook consists of cells with codes. The codes

in each cell are executed to import libraries, read tabular data to

DataFrame, process/analyze the data, and output analytic results.

Definition 1 (Computational notebook.). A computational
notebook 𝑁 is a 4-pair (C𝑁 ,D𝑁 ,O𝑁 ,L𝑁), where C𝑁 is the set of
cells (i.e., source codes), D𝑁 is the set of tabular data, O𝑁 is the
multi-set of output formats, and L𝑁 is the set of imported library
names.

The left figure in Figure 1 shows a Jupyter notebook. This

notebook has three cells; the first one imports libraries and reads

a CSV file, the second one conducts preprocessing for the data,

and the third one analyzes the data and outputs analytic results.

2.2 Problem formulation
We formulate our problem in this paper. Our similarity search

aims to find top-𝑘 computational notebooks with the most similar

contents to a given query.

In our problem formulation, we define a query 𝑄 as sets of

contents of computational notebooks; codes in cells, tabular data,

output formats, and libraries. 𝑄 specifies contents that are ex-

pected to be included in the computational notebooks in the

search result. The similarity between a given query and com-

putational notebook is defined by a weighted sum of similarity

functions of each content as follows:

Definition 2. Computational notebook similarity. Given
a query 𝑄 , a computational notebook 𝑁 , we define similarity be-
tween 𝑄 and 𝑁 , Sim(𝑄, 𝑁) as follows:

Sim(𝑄,𝑁)=𝑤𝐶 sim𝐶

(
C𝑄 ,C𝑁

)
+𝑤𝐷 sim𝐷

(
D𝑄 ,D𝑁

)
(1)

+𝑤𝑂 sim𝑂

(
O𝑄 ,O𝑁

)
+𝑤𝐿sim𝑙

(
L𝑄 ,L𝑁

)
where sim is functions to evaluate the similarity between contents in
queries and computational notebooks.𝑤 is a user-specified weight
to control importance of contents.

We can use any similarity functions for sim, such as Jaccard

similarity.Based on the above definition of similarity, we formu-

late the problem that we solve in this paper as follows:

Web browser
Interface

① set query graph

Server
Search Engine

② "SEARCH" request

④ return a ranked
list of notebooks ③ search

Search for notebooks
that are similar to the query

Code 1

Data 1 PostgreSQL

⑤ display
hyperlinks

Neo4J

SQLite

Figure 2: The architecture of JupySim and processing pro-
cedures

Problem Formulation. Given a query 𝑄 , a set N of computa-
tional notebooks, an integer 𝑘 , and weights, we find a ranked list A
of 𝑘 computational notebooks such that for 𝐴 ∈ A and 𝑁 ∈ N\A,
Sim(𝑄,𝐴) ≥ Sim(𝑄, 𝑁).

3 OUR SYSTEM JUPYSIM
We develop JupySim, which is a system for similarity search

on Jupyter notebooks. JupySim converts Jupyter notebooks into

graphs and stores the graphs into databases for efficiently and

effectively finding similar Jupyter notebooks.

Figure 2 illustrates the architecture of JupySim and its pro-

cessing procedures. JupySim has (1) interface, (2) search engine,

and (3) database. In the interface, users input queries and see hy-

perlinks of Jupyter notebooks with top-10 similarity. The search

engine accepts queries and returns search results after comput-

ing the similarity of Jupyter notebooks in the databases. The

databases store Jupyter notebooks (e.g., their datasets), their cor-

responding graphs, and historical queries.

We explain a graph converting method, search engine, inter-

face, functions, and implementation of JupySim.

3.1 Graph conversion
JupySim converts Jupyter notebooks to directed acyclic graphs

(DAGs). Nodes on DAGs represent codes in cells, data, and out-

puts, and edges represent their flows. For example, if codes in

cells read data, corresponding nodes of codes and data have edges.

Each node is assigned with a type (i.e., code, data, and output)

as a label and has a property corresponding to its label (e.g., a

set of records for data label). Libraries are associated with DAGs

instead of nodes.

Queries are also represented by graphs as the same style of

Jupyter notebooks. Users set nodes and edges in queries as con-

tents (i.e., codes, data, and outputs) that users want and their rela-

tionships, respectively. Each node in queries can include its prop-

erty, for example, nodes representing codes can include names

of functions that users want to learn.

The right-hand side figure in Figure 1 shows a DAG corre-

sponding to the Jupyter notebook on the left-hand side. Each cell,

data, and output is converted into Code1, Code2, Code3, Data1,

and Output1, respectively. This DAG shows that Data1 is read

by Code1 and processed by Code2, and Output1 is generated by

Code3. Code1, Code2, and Code3 are run in the order.

555

JupySim: Jupyter Notebook Similarity Search System EDBT 2022, 29th March-1st April, 2022, Edinburgh, UK

3.2 Search engine
The search engine in JupySim uses two steps to find top-𝑘 Jupyter

notebooks; subgraph matching and similarity computation. Each

step effectively prunes candidates of Jupyter notebooks that are

not obviously included in the results.

Subgraph matching finds Jupyter notebooks that are matched

with contents and their relationships specified in queries. For

example, if a query includes two nodes labeled with data and both

nodes connect to the same node labeled with code, the results

contain only Jupyter notebooks satisfying such requirements.

Subgraph matching effectively prunes similarity computation of

Jupyter notebooks. Since the sizes of queries are typically small,

this step does not take a large cost.

Similarity computation computes Sim(𝑄, 𝑁) for finding the

ranked list 𝐴. For this purpose, we compute the similarity be-

tween a given query and Jupyter notebooks that are not pruned by

subgraph matching. We compute the similarity between matched

nodes according to sim in Equation(1). In the similarity compu-

tation, we compute the similarity of data (i.e., 𝑠𝑖𝑚𝐷 (D𝑄 ,D𝑁))
after computing the similarity of code, output, and library. This is

because computing the similarity of data is more expensive than

computing that of other pairs because datasets are typically large

for data analytic tasks. We can prune the Jupyter notebooks that

exactly do not have the highest 𝑘 Sim(𝑄, 𝑁) before computing

the similarity of data.

3.3 Web interface
Figure 3 shows a Web interface of JupySim. The four areas are

used for visualizing a DAG of query, setting queries, saving/load-

ing queries, and outputting the ranked list of search results, re-

spectively.

By the visualization of a DAG of query, we can easily under-

stand the structure of it, and see the contents of nodes when

we hover the mouse over the nodes (see Figure 4). In the area

of setting queries, we can input/edit queries (e.g., libraries and

nodes) and weights for specifying targets of Jupyter notebooks.

Users can try different weights settings to find their targets. For

example, if users consider that code and data are more important

than library and output, weights of code and data should be larger

than those of library and output. We can add/delete nodes and

edges, and also edit nodes’ identifiers, types, and properties (see

Figure 5). In the area of saving/loading queries, we can save the

current query to the database and load a query in the database

that stores the set of queries saved previously. We can delete the

query stored in the database and reset the current query to empty.

After clicking the “search” button, we can see the ranked list of

hyperlinks of Jupyter notebooks with top-10 similarity to the

query. When clicking the hyperlinks, we can see the notebooks

on Jupyter Notebook software.

3.4 Functions
JupySim has three functions to improve usability:

• Reachability of nodes: We can set “reachability” as a type

of nodes. If we set the reachability, our subgraph matching

allows existing (both multiple and single) any nodes be-

tween two nodes before/after the node with reachability.

• Library extraction: We can put a fragment of source codes

of importing libraries as the target libraries, and then

our system automatically extracts the name of libraries.

Figure 3: A Web interface of JupySim: This interface has
four areas; visualizing a graph of query (left top), editing
queries (right top), saving/loading queries (left middle),
and the ranked list of search results (bottom).

Figure 4: Behavior of
mouseover on graphs

Figure 5: Editing nodes

For example, when we input “from sklearn import neu-

ral_network, svm” , our system extracts “neural_network”

and “svm”.

• Load/save queries from/to JSON files: Our system trans-

forms a query into a JSON file to download the query on

local systems. We can upload the JSON file into our system.

This helps users to easily edit the queries, for example,

replacing words with other words.

3.5 Implementation
We use PostgreSQL, Neo4j, and SQLite as database management

systems for storing contents (e.g., tabular data) of Jupyter note-

books, DAGs of Jupyter notebooks, and queries, respectively. The

search engine is implemented by Python, and the Web interface

is implemented by Javascript and Django.

556

EDBT 2022, 29th March-1st April, 2022, Edinburgh, UK Misato Horiuchi, Yuya Sasaki, Chuan Xiao, and Makoto Onizuka

4 DEMONSTRATION PLAN
Our demonstration shows how JupySim helps users to reuse

Jupyter notebooks. JupySim supports quickly finding Jupyter

notebooks to learn how to analyze data, use libraries, and im-

plement operations. In the demonstration, we use 111 Jupyter

notebooks shared on Kaggle competitions and stored them in the

databases.

In this demonstration, we first provide a basic flow of similarity

search: load a query, modify the query, and find similar Jupyter

notebooks to the query. Users can compare the search results

to the query in order to evaluate the similarity between them.

Then, users can interactively modify the query for finding other

Jupyter notebooks. Since JupySim can save and load queries, the

users easily modify the queries to find Jupyter notebooks that

they want.

We then demonstrate three scenarios to show the usefulness

of JupySim for many purposes.

Scenario 1. Analysing datasets: Suppose that we have tabular

data and do not have any good ideas for analysing the data. In

such case, we would like to refer to other Jupyter notebooks that

analyse similar data. JupySim supports finding Jupyter notebooks

that read and analyze data similar to our data.

In this scenario, we pose queries that include matplotlib and

seaborn as libraries, our data as data, a visualize function as codes,

and a figure as output. Cells after reading data and before visual-

ization functions include codes for analysing data. Users can see

that JupySim effectively finds Jupyter notebooks including such

data analysis.

Scenario 2. Learning libraries and functions: Suppose that

wewould like to learn how to use libraries and functions. JupySim
can efficiently find Jupyter notebooks that import specific li-

braries and use functions.

In this scenario, we pose queries that include lightgbm and

xgboost as libraries, and then we find Jupyter notebooks import-

ing these libraries. We can learn how to use these libraries from

codes included in the Jupyter notebooks. We can additionally

include specific functions in queries if we would like to learn

the functions. We show that JupySim can support beginners in

learning the implementation for data science.

Scenario 3. Implementing data preprocessing: We may con-

duct data preprocessing such as data cleaning manually for small

datasets. Of course, it is difficult to conduct such preprocessing

for large datasets manually. We would like to implement these

preprocessing but we may not know how to implement them.

In this scenario, we show that JupySim can find Jupyter note-

books with data preprocessing. We input just data before/after

data cleaning and do not input any codes for data preprocessing.

Figure 6 illustrates a given query with data (light blue nodes)

and the top-1and top-3 search results with preprocessing codes.

The query has four nodes; 1. code for reading a CSV file, 2. data

before preprocessing, 3. reachability (navy blue node), and 4.

data after preprocessing. Top-1 and Top-3 results have differ-

ent data preprocessing. The former replaces Null to zero and

the later deletes records including Null. This result shows that

JupySim can support to effectively find Jupyter notebooks for

data preprocessing.

5 CONCLUSION
In this paper, we developed JupySim, which realizes similarity

search on Jupyter notebooks based on the definition of similarity

of computational notebooks. Our search engine converted Jupyter

(a) Query

(b) Top-1 result

(c) Top-3 result

Figure 6: Scenario 3: Searching for Jupyter notebooks with
data preprocessing

notebooks into DAGs for effectively pruning the candidates of

search results by utilizing subgraph matching. We demonstrated

that JupySim effectively supports finding Jupyter notebooks what

users want. We hope that JupySim helps users to reuse Jupyter

notebooks and accelerate data science tasks.

ACKNOWLEDGMENTS
This work was supported by JSPS KAKENHI Grant Number

JP20H00583.

REFERENCES
[1] M. Horiuchi, Y. Sasaki, C. Xiao, and M. Onizuka. Similarity search on computa-

tional notebooks. arXiv preprint arXiv:2201.12786, 2022.
[2] J. Krinke. Identifying similar code with program dependence graphs. In

Proceedings of the WCRE, 2001.
[3] J. Krinke and C. Ragkhitwetsagul. Code similarity in clone detection. In Code

Clone Analysis. Springer, 2021.
[4] M. White, M. Tufano, C. Vendome, and D. Poshyvanyk. Deep learning code

fragments for code clone detection. In Proceedings of the IEEE/ACM ASE, 2016.
[5] C. Yan and Y. He. Auto-suggest: Learning-to-recommend data preparation

steps using data science notebooks. In Proceedings of the ACM SIGMOD, 2020.
[6] Y. Zhang and Z. G. Ives. Juneau: data lake management for jupyter. Proceedings

of the VLDB Endowment, 12(12), 2019.
[7] Y. Zhang and Z. G. Ives. Finding related tables in data lakes for interactive data

science. In Proceedings of the ACM SIGMOD, 2020.

557

