
Efficiently Managing Deep Learning Models
in a Distributed Environment

Nils Strassenburg

nils.strassenburg@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Ilin Tolovski

ilin.tolovski@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

Tilmann Rabl

tilmann.rabl@hpi.de

Hasso Plattner Institute

University of Potsdam

Potsdam, Germany

ABSTRACT
Deep learning has revolutionized many domains relevant in re-

search and industry, including computer vision and natural lan-

guage processing by significantly outperforming previous state-

of-the-art approaches. This is why deep learning models are part

of many essential software applications. To guarantee their reli-

able and consistent performance even in changing environments,

they need to be regularly adjusted, improved, and retrained but

also documented, deployed, and monitored. An essential part of

this set of processes, referred to as model management, is to save

and recover models. To enable debugging, many applications

require an exact model representation.

In this paper, we investigate if, and to what extend, we can

outperform a baseline approach capable of saving and recovering

models, while focusing on storage consumption, time-to-save,

and time-to-recover. We present our Python library MMlib, of-

fering three approaches: a baseline approach that saves complete

model snapshots, a parameter update approach that saves the

updated model data, and a model provenance approach that saves

the model’s provenance instead of the model itself. We evalu-

ate all approaches in four distributed environments on different

model architectures, model relations, and data sets. Our eval-

uation shows that both the model provenance and parameter

update approach outperform the baseline by up to 15.8% and

51.7% in time-to-save and by up to 70.0% and 95.6% in storage

consumption, respectively.

1 INTRODUCTION
Deep learning (DL) is essential for many scientific and industrial

applications such as image recognition, virtual assistants, and

recommender systems. Even in safety-critical environments such

as autonomous driving, DL plays a key role [14, 37].

To guarantee reliable performance in dynamic environments

at all times and to reproduce results consistently, DL models

need to be regularly adjusted, improved, and retrained as well as

documented, deployed, and monitored. The process surrounding

this is defined as model management [31].

When managing models in safety-critical environments, it is

crucial to save and recover exact representations of models that

output the exact same results to enable debugging. Therefore, it is

insufficient to look at high-level metadata; instead it is necessary

to reproduce or to load the actual model.

One practical example are the models representing electric

vehicles’ battery health. These batteries consist of hundreds of

individual cells, which need to be controlled by a battery man-

agement system (BMS). The BMS levels out slight differences in

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

individual cells and controls the charging and discharging for

the battery safety. Another function is the power prediction, e.g.,

for acceleration and braking or for calculation of the remain-

ing driving range. This is typically done by a battery simulation

model, which needs to be updated regularly per car as the battery

changes with aging or other conditions. Because battery safety is

very important in automotive setups, models need to be precise

to prevent failure or accidents. Today’s models are often simple

and only deliver a rough estimation, therefore, large safety mar-

gins are necessary. The model parameters are initialized from

laboratory measurements of other cells of the same type and

updated from measurements during operation so that it can take

some time until the model of a specific vehicle battery is adapted.

In a laboratory setting, not all possible real-life scenarios can be

tested, so the model needs to be adapted for new and unseen

situations. In case of failure or to improve the precision across

all batteries after the adaptation, the models need to be exactly

reproducible in a central storage.

Saving the exact models can be achieved by saving a complete

snapshot of every model. However, the issue with this approach

is that a standard DL model often exceeds 100 MB. Taking into

account that the complexity of state of the art models increases ex-

ponentially [26] this results in considerable storage consumption

for frequently updated models. Therefore, it is desirable to find

easy and reliable ways to reduce the overall storage consumption.

Even for a single model, it is beneficial to save storage in cases

when a transfer with limited available bandwidth is required.

Previous research has produced multiple approaches that track

and save training metadata but do not or only naively save the

model snapshots [8, 32, 39, 42]. There are other approaches [21]

that save models in a more advanced way to reduce storage but

focus on fast model recovery and use complex algorithms to

optimally save a set of models that become unfeasible for the

amount and frequency of models we aim to save.

In this paper, we explore different approaches to save and

recover models and their effect on storage consumption, time-to-

save, and time-to-recover. We present two advanced approaches

that we evaluate against our baseline approach and bundle all

approaches in an open source Python library MMlib 1
.

We make the following contributions:

(1) We present three approaches for saving and recovering ex-

act model representations: a baseline approach that saves

each model independently, a parameter update approach

that saves parameter updates instead of a complete mod-

els, and a model provenance approach that saves models

without saving their parameters.

(2) We extensively evaluate all approaches and show that

the model provenance and parameter update approach

1
https://github.com/hpides/mmlib

Series ISSN: 2367-2005 234 10.48786/edbt.2022.12

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.12

outperform the baseline by up to 15.8% and 51.7% in time-

to-save and by up to 70% and 95.6% in storage consumption,

respectively.

(3) We analyze how the approaches perform in different dis-

tributed environments and find that all of them scale with-

out a loss in performance.

(4) We publish the three approaches together with a model

verification probing tool inMMlib, an open-source Python

library.

The remainder of this paper is structured as follows. In Sec-

tion 2 we provide background information and definitions on DL

and how to reproduce experiments. In Section 3 we define the

focus of our work and introduce three different approaches to

save and recover models. We extensively evaluate all approaches

in Section 4. In Section 5, we give an overview of the related

work. Finally, in Section 6 we conclude our work and provide an

outlook on future work.

2 BACKGROUND
In this section, we first cover DL foundations in Section 2.1 and

give term definitions for recoverability, reproducibility, and prove-

nance in Section 2.2. In Section 2.3 we discuss reproducibility in

DL and present how to reproduce model inference and training

in Section 2.4.

2.1 Deep Learning
Deep learning (DL) is a subset of machine learning (ML) [12]. In

this paper, we focus on supervised DL, meaning that the models

are trained using labeled input data [13]. In the following section,

we give definitions for the most relevant terms in the scope of this

paper and give a generic description of the DL model lifecycle.

DL Term Definitions. A model is “the representation of what a
machine learning system has learned from the training data” [13].
A model𝑀 = (𝑀𝑎, 𝑀𝑝) consists of two pieces: the model archi-
tecture (𝑀𝑎) which is the computational structure for making

a prediction and the model parameters (𝑀𝑝) representing the

weights and biases.

In DL, it is a common practice to use well-established models

as a base to develop new models [38]. Being aware that models

can be related in various different ways, we define the model

relations relevant for this paper and illustrate them in Figure 1.

Given two models 𝑀 = (𝑀𝑎, 𝑀𝑝) and 𝑀 ′ = (𝑀 ′
𝑎, 𝑀

′
𝑝). If a

model𝑀 ′
was created by modifying or using parts of𝑀 , we say

𝑀 is the base model of𝑀 ′
, or𝑀 ′

was derived from𝑀 and denote

this as𝑀 → 𝑀 ′
.

If 𝑀 ′
’s architecture is identical to 𝑀’s architecture but all

parameters differ, we say𝑀 ′
is a fully updated model version of

𝑀 . If only a subset of the parameters have changed we say𝑀 ′
is

a partially updated model version.
If𝑀𝑎 = 𝑀 ′

𝑎 ∧𝑀𝑝 = 𝑀 ′
𝑝 we say𝑀 and𝑀 ′

are equal.

DL Model Lifecycle. DL models are used to make predictions

on certain data. To create a model that makes good predictions,

we have to train it on a representative dataset. This gives us an

initial version of a model. Over time the distribution of the data

will change, known as concept drift [43]. This effect decreases

the quality of the model predictions and makes it necessary to

train the model on an updated dataset. The training leads to an

updated model which makes better predictions on the current

data. Because concept drift is a continuous process, we repeat

the training process regularly.

Figure 1: Model relations (left to right): base model, fully
updated model versions, and partially updated model ver-
sion.

2.2 Recoverability, Reproducibility, and
Provenance

The National Academy of Science [23] and Barba et al. [3] define

the terms repeatability, reproducibility, and replicability and dis-

cuss their inconsistent use in the broader scientific community.

The Association for Computing Machinery (ACM) defines these

terms within the field of computer science [19]. Hartley et al. [16]

define repeatability, reproducibility, replicability, and provenance

in the context of DL and present a basic approach implementing

their guidelines for reproducible model training.

We base our understanding of reproducibility and provenance

on the definitions of Hartley et al. [16]. The inference of a model
𝑀 is reproducible if processing the same input data by𝑀 always

produces exactly the same output. The training of a model𝑀 is
reproducible if executing exactly the same training process for𝑀

(same input data, code, parameters, etc.) always results in exactly

the same updated model. A model𝑀 is reproducible if inference
and training of𝑀 are reproducible. The provenance of a model is

the history of the processes used to produce it, together with the

input/training data.

We define a model as recoverable from given data, if the data

provide sufficient information to reconstruct the model (meaning

architecture and parameters) from them. With this definition in

mind, we want to point out that there are multiple different ways

to recover a model𝑀 from given data𝐷 . The easiest way is where

𝐷 contains𝑀 stored in a specific format. If𝑀 is reproducible, an
alternative is that 𝐷 provides sufficient model provenance, which
we can use to recover𝑀 by reproducing its training. Framework

independent formats like PMML [15], PFA [27], or ONNX [25]

do not capture the model in a level of detail needed to reproduce

model training.

2.3 Reproducibility in Deep Learning
For almost all DL models it is neither supported to reproduce

model inference nor to reproduce model training by default [28,

33]. In this section we discuss the factors that prevent the in-

ference and training of DL models from being reproducible and

ways to eliminate them.

Code, Parameters, and Data. If the source code defining the

model or the parameters differ across executions, we cannot

expect to get the same results. The same holds for the input

data; if the input data varies between runs, we cannot expect to

reproduce results. The solution is to track the source code, the

parameters, and the input data to use them consistently across ex-

ecutions. Applied to the deep learning (DL) domain, this includes

tracking the model’s code, the inference and training routine, the

235

loss function(s) used, and the optimizer together with all param-

eters. Additionally, we have to ensure the same training input.

This requires tracking the raw dataset and how it is provided by

components such as the preprocessor or the dataloader.

Intentional Randomness. Randomness is often intentionally in-

troduced as part of specific machine learning (ML) algorithms. Ex-

amples in DL are random data augmentation [34], randomweight

initialization [10], and regularization layers such as dropout [35].

Since computers cannot generate real randomness, they use pseu-

dorandom number generators (PRNGs). The output of PRNGs

is entirely dependent on an initial value called seed. Therefore,
setting the seed leads to reproducible pseudorandomness.

Floating-point Arithmetic. A further source of non-determ-

inism that prevents reproducibility in DL is floating-point arith-

metic [28]. Not all floating-point numbers can be represented

exactly with a finite number of bytes; they must be approximated

by rounding [11]. This implies that different implementations

of the same operator or the order of calculation can lead to dif-

ferent results [24, 28]. An example is shown in Figure 2 where

the calculation of the dot-product with the serial and the parallel

method leads to similar but different results.

To reproduce calculations using floating-point arithmetic, we

have to ensure that: (1) the operator is executed in the same

environment, meaning on top of the same software and hardware,

and (2) the implementation of the operation itself is deterministic

and reproducible [28].

+ + + +

a[0]

0

b[0] a[1]b[1] a[2]b[2] a[3]b[3]

+

+ +

a[0]b[0] a[1]b[1] a[2]b[2] a[3] b[3]

x x x x

Parallel Method

Serial Method

x x x x

Figure 2: Example of different computation results for the
dot-product comparing the serial and the parallel method
(Inspired by Figure 3 and Figure 5 in [24]).

2.4 Reproducible Inference and Training
To reproduce model inference and training, we have to use iden-

tical code, parameters, and data; set the seeds for all PRNGs;

and making floating-point operations reproducible by always

executing them in an equivalent environment and only using

their deterministic implementation. To check if a given model is

reproducible in a given setup, we developed a probing tool for

PyTorch [7] models and integrated it in MMlib. Inspired by the

tool Riach [28] presented for TensorFlow [1] models, our probing

tool executes a given PyTorch model twice using the same data to

compare layer-wise the input and output tensors for the forward

and backward pass. These intermediate results can be saved and

loaded which enables us to also verify the model reproducibility

across different machines.

We used the probing tool to check if popular computer vision

models are reproducible. For a majority of models, we find that

we can reproduce inference and training. For non reproducible

(a) U1 – Distribute initial model (b) U2 – Distribute new model

(c) U3 – Inform about newmodel (d) U4 – Recover model

Figure 3: Use cases

models, we find that the reason is their use of deprecated layers

where PyTorch does not provide a deterministic implementation.

We conclude that reproducing model inference and training is

possible by applying the measures presented above if there is a

deterministic implementation for every layer.

3 MMLIB: MODEL MANAGEMENT LIBRARY
The research question we address in this paper is if and to what

extent we can outperform a baseline capable of saving and recov-

ering deep learning (DL) models without any loss in terms of stor-

age consumption, time-to-save (TTS), and time-to-recover (TTR).

To investigate this question, we develop three approaches that all

cover the same operations and provide them in a Python library

that we call MMlib.
We develop MMlib with a distributed setting in mind that

consists of a central server and multiple distributed devices that

we refer to as nodes. MMlib covers the four use cases shown

in Figure 3. We initially develop models on the server and dis-

tribute them to all nodes (U1). Over time we update the models

in two ways. (1) We update the models on the server and deploy

this update to the nodes (U2). (2) We update the model on the

node using locally collected data and inform the server about this

model before we use it (U3). Regardless of whether we trained
the models on the server or the node, the server has to monitor

every model that exists and has to be able to losslessly recover it

when requested (U4).
Within this setting, we assume that every node updates its

model regularly while major model updates happen only occa-

sionally. We also assume that recovering a model occurs rarely

compared to the other scenarios. Mapped to the use cases this

means𝑈3 happens frequently,𝑈1 and𝑈2 from time to time, and

𝑈4 rarely. For U3 the most likely model relations are partially and

fully updated model version (see Section 2.1) which is why we

focus on these model relations throughout this paper.

In MMlib the focus is on result reproducibility and model

recoverability. Therefore, we save an exact representation of all

models. This means that a model we save and a model we recover

are equal with regards to the definition in Section 2.1. For now,

236

we save all models created and do not optimize for other data

like training or log data.

Having set our focus, we develop three approaches. First, we

present a baseline approach (BA) (Section 3.1) and implement

two strategies to improve it. (1) The first is to save derived models

by only saving the model data that has changed compared to

its base model, which leads to the parameter update approach

(PUA) (Section 3.2). (2) The second strategy is to not save derived

models, but only their provenance data, which results in the

model provenance approach (MPA) (Section 3.3).

3.1 Baseline Approach
The BA covers all requirements with minimal complexity. There-

fore, we take the BA as a reference point to evaluate the two

other approaches. This implies that the BA ignores the similarity

of a base model and its derived model and does not apply any

advanced measures to optimize storage consumption.

Model Representation. Using the BA, we represent a model

using three types of information: metadata about the model, the

model architecture, and the model parameters.

The model metadata includes an identifier, a reference to the

base model, and optionally checksums to verify that a model was

correctly recovered. The reference to the base model is given, and

the identifier auto-generated. To generate checksums we hash

the tensor objects, which is the data structure used to represent

model parameters.

We represent the model architecture by its implementation in

code and detailed environment information. This includes the

framework version, all third-party libraries, the language inter-

preter, operating system kernel, as well as the driver versions, and

the hardware specification. This is necessary to guarantee repro-

ducibility because, as discussed in Section 2, the implementation

and the behavior of certain layers might differ across framework

versions and underlying hardware. To represent the model pa-

rameters, we serialize the model’s internal data structure that

maps each layer to its parameters.

Model Storage. To save a model, we have to save two types of

data: metadata and files. The metadata consists of the environ-

ment information, a reference to the base model and optionally

hash values. The files are the model code and the serialized model

parameters.

We save the extracted model metadata in different JSON [6]

documents that we organize in a hierarchical structure. We iden-

tify each document by a generated identifier and persist them in

a document database like MongoDB [22]. To save files, we use

a shared file system and insert an automatically generated file

identifier as a reference in the appropriate JSON document.

Model Recovery. To recover a model holding its identifier, we

recursively load all associated JSON documents and files. We

explicitly exclude loading documents holding base model in-

formation since the BA saves every model independently. The

recovered documents and files provide sufficient information to

recover the model losslessly and, if provided, we can use the

saved checksums to verify this.

3.2 Parameter Update Approach
In contrast to the BA, the parameter update approach (PUA)

utilizes the fact that derived models are related to each other

and saves only the information that differ compared to the base

model.

Model Representation. The PUA saves all model information

for an initial model exactly as the BA does it. For derived models,

the PUA represents every model by a reference to its base model

and the changed information. Parts of a model that could change

are, for example, the model code and environment (both affecting

the model architecture) or the model parameters. Given that we

focus on partially and fully updated model versions, the model

code does not change and the most important and frequently

updated information are the model parameters.

We assume that whenever a new model𝑀 is derived from a

base model 𝐵 (𝐵 → 𝑀), a subset of the model parameters are de-

clared as not-trainable on a layer granularity. We further assume

that all trainable parameters will change at least marginally. To

extract the updated parameters of 𝑀 , we take 𝑀’s parameters,

compare them layer-wise to 𝐵’s parameters, and delete all layers’

parameters that have not changed. We call the pruned version of

𝑀 ’s parameters the parameter update and serialize it. Except that
we save the parameter update instead of a full model snapshot,

the PUA’s saving process is identical to the BA’s.

Model Recovery. The PUA saves a model𝑀 (𝐵 → 𝑀) by only

saving the updated information compared to its base model 𝐵.

To recover 𝑀 , we load its base model 𝐵 and merge its param-

eter information layer-wise with the policy of prioritizing 𝑀’s

parameter information in case of merge conflicts.

Using the PUA, recovering a model is a recursive process. To

recover a model 𝑀 (𝐵 → 𝑀), we have to recover 𝐵. If 𝐵 is also

referencing a base model, we also have to recover it and so on.

This recursive process can be computationally intense and long.

This is not a problem for recovering a specific model since we

assume it happens rarely. Nevertheless, without further measures,

it passively slows down saving a model.

To save a model 𝑀 (𝐵 → 𝑀) using the PUA, we have to

compare it to 𝐵. If 𝐵 is not in memory, we have to recover 𝐵

and all its base models which can take a significant amount of

time. To eliminate this problem, we always save a hash value

for every layer of a saved model when using the PUA. Having

this information, we can identify the changed layers by only

recovering and comparing the direct base model’s hash values

instead of recursively recovering it fully.

We organize the layer hash values in a Merkle tree [20] where

every model layer is represented by a leaf node. A leaf node holds

the parameter hash for one layer. A non-leaf node combines the

two hashes of its child nodes to a new hash value and repre-

sents multiple layers. The root node represents the whole model.

In Figure 4 we show an example of a model with eight layers.

Having a Merkle tree for two models enables us to determine

if the models have equal weights by only comparing the trees’

root nodes. This is beneficial to check if a model was correctly

recovered. For bigger models, the Merkle tree makes it also more

efficient to find out what parts of the model have changed.

In the example in Figure 4, the last two layers of the model

have changed which results in changed hash values for the nodes

marked in red. Here we need only seven instead of eight com-

parisons to find what layers have changed. For more realistic

architectures with more layers the benefits become even clearer.

In the same scenario but for a model with 64 layers the number

reduces from 64 to 13, and for a model with 128 layers from 128

to 15.

237

L1 L2 L3 L4 L5 L6 L7 L8

Figure 4: Merkle tree representing layer hash values.
Changed layers and nodes are represented in hollow red
circles. Nodes that need to be compared to find the changed
layers are marked with black boxes.

3.3 Model Provenance Approach
Both, the BA and the PUA are based on saving model parame-

ters. Therefore, their performance is highly dependent on the

architecture of the model they save or recover. In this section,

we present the model provenance approach (MPA). Instead of

saving model parameters, the MPA saves the model provenance,

which describes the processes and data used to create the model.

We first specify the single parts of the provenance data be-

fore we describe the high-level steps of collecting and saving

all information together with run time estimations. Afterward,

we describe implementation details about representing the train-

ing process, tracking the training environment, and saving the

dataset.

Model Representation. The MPA saves the first model with the

same logic the BA uses. For all following models, the MPA rep-

resents a model by its provenance data. The provenance data

consists of (1) information about the training process, (2) a de-

tailed specification of the training environment, (3) the training

data, and (4) a reference to the base model.

Given our assumption of partially and fully updated model

versions, the model architecture does not change across derived

models. Therefore, the model architecture is defined by the refer-

ence to the base model and the environment information. This

is why we do not include the model architecture in the model

provenance data.

Model Provenance Tracking. We represent the training process

by the training source code. For every object referenced as part

of the training process, we save its state before the training starts.

The run time of this process depends linearly on the complexity

of the training process and the complexity of the referenced

objects. We collect detailed training environment information by

calling various library functions. This takes constant time for a

given environment.

To save the used dataset, we compress it to a single file, save

it, and reference the file in our metadata. The run time of this

step depends on the size of the dataset and the used compression

algorithm. The reference to the base model is given; we do not

need to extract or generate it. This leads to a constant run time

close to zero.

ImageNetTrainService

+ state_dict: dict<str:Wrapper>

+ train(model, **kwargs)

DataLoaderWrapper

id: "random-id-12345"

class-name: "DataLoader"

import-cmd: "import loader"

code: None

args: {"b_size": "32", ...}

OptimizerWrapper

id: "random-id-23456"

class-name: "SGD"

import-cmd: "import SGD"

code: None

args: {"lr":"1e-4", ...}

state: "file-id-abc123"

internal state

no internal state

train method as
Python source code

Figure 5: Example of a Train Service

Training Process. We represent the training process by three

different groups of data: (1) parametrized objects without an in-

ternal state
2
to save objects like the dataloader, (2) parametrized

objects with an internal state to save objects like the optimizer,

and (3) the overall training logic to define how the objects rele-

vant for training (for example, optimizer, dataloader, and dataset)

interact with each other and what hyper-parameters we use.

To save and recover a parametrized object we wrap it in a

wrapper object that is responsible for saving and recovering it. In

our implementation, a wrapper object holds the following infor-
mation for its wrapped object: a reference to it; its class name; the

code or, if the object is defined in a library, the import command

(for example, for objects defined in a library); the initialization

arguments; arguments that are read from a configuration file;

and arguments that are references to other objects.
3
To represent

its wrapped object a wrapper serializes all the information listed

above except the wrapped object instance. To wrap objects hold-

ing an internal state the wrapper additionally holds a reference

to a state file which can be any file that represents the state of

the wrapped object.

To represent the training logic, we provide an interface called

TrainService. Every TrainService defines the logic to train a given

model in its train method and references all objects that are

relevant for it wrapped in wrapper objects. To represent an in-

stance of a TrainService, we serialize all referenced wrappers and

additionally the TrainService’s class name and code or import

command. Figure 5 shows the example of an implementation of a

TrainService that we call ImageNetTrainService. For the dataloader
and the optimizer it refers to their wrapper objects. Compared to

the stateless dataloader, the optimizer has an internal state that

is saved in a state file. For the train logic the TrainSevrvie refers
to a train method implemented in Python.

For the provenance data, we represent every wrapper object

and the training service as a separate JSON document. We save

all the documents and files exactly as we do it for the BA and the

PUA.

2
With internal state we mean, in this case, a state that we can not recover by just

initializing the object with the same constructor arguments.

3
Here we just save that reference objects are part of the constructor arguments.

How they are handed over is managed by saving the training process.

238

Environment Tracking. We extract information about the train-

ing environment including the DL framework version, all third-

party libraries, the language interpreter, operating system kernel,

the driver versions, and the hardware specification.

In our current implementation of MMlib, we call various li-

brary functions provided by the DL framework and Python to

collect all environment information. To the best of our knowl-

edge, there is no approach available that tracks and collects the

entire environment information needed for the MPA. Existing

approaches track subsets of the environment. ReproZip [4], for

example, is a tool that collects detailed information about in-

stalled software, but it does not extract information about the

available hardware. A full integration or adaptation of ReproZip

to track the software dependencies for the MPA is part of our

future work.

Managing Data sets. MMlib compresses datasets to a file, saves

the file, and references it in the provenance data. If a dedicated

external system manages these datasets, as presented by Agrawal

et al. [2], we do not have to compress the dataset but only save

the reference to the managed dataset as part of the provenance

data.

Model Recovery. With the MPA, we always save a model 𝑀

by referencing its base model 𝐵. This makes recovering 𝑀 a

recursive process that is almost identical to that of the PUA. The

only difference is that the MPA reproduces the model training

step-by-step instead of applying a parameter update which can

take a significant amount of time.

4 EVALUATION
In this section, we evaluate the three approaches presented in

Section 3 on several datasets and different model architectures

in a distributed environment. We first describe our setup in Sec-

tion 4.1, before we evaluate every approaches’ storage consump-

tion in Section 4.2, time-to-save (TTS) in Section 4.3, and the

time-to-recover (TTR) in Section 4.4. We evaluate the impact

of a deterministic training on the training time in Section 4.5.

In Section 4.6 we analyze the approaches’ performance in large

distributed environments and finally, discuss the best approach

to use under different assumptions in Section 4.7.

4.1 Setup
Evaluation Flow. We evaluate all our approaches on a sequence

of use cases (Section 3) that we call the evaluation flow. The
evaluation flow starts with𝑈1 and continues with four iterations

of𝑈3 (𝑈3-1-𝑛 with 𝑛 ∈ {1, 2, 3, 4}) followed by𝑈2 and then again

four iterations of 𝑈3 (𝑈3-2-𝑛 with 𝑛 ∈ {1, 2, 3, 4}). That is, each
execution of the evaluation contains of ten executed use cases

that each lead to a new model. Except for the first model created

in 𝑈1, all models are derived from the model generated in the

previous use case which are transitively derived from the model

created in𝑈1. In Figure 6 we show these model relations.

Datasets. As mentioned, we derive a new model by training in

every use case. We list the datasets that we use to model the use

cases for the evaluation in Table 1 and give information about

how many images they include, what size they have and the

associated use case.

In 𝑈1 we distribute an extensively trained initial model to

the nodes. To save resources, we use the pre-trained parameters

provided by PyTorch that were generated by training on the

ImageNet training dataset from 2012 [29]. In𝑈2 we distribute a

U-1 U-3-1-1 U-3-1-4

U-3-2-1 U-3-2-4U-2

Figure 6: Models created during the execution of the evalu-
ation flow.

Table 1: All datasets used throughout the evaluation with
their short name, number of images, size, and the corre-
sponding use case.

Short name Images Size Use case

𝐼𝑁𝑒𝑡𝑣𝑎𝑙 50,000 6.3 GB 𝑈2

𝑚𝐼𝑁𝑒𝑡𝑣𝑎𝑙 1,400 200 MB 𝑈2

𝐶𝐹 -512 512 94.3 MB 𝑈3

𝐶𝑂-512 512 71.6 MB 𝑈3

Table 2: Set of selected model architectures [17, 30, 36] for
the evaluation with the number of trainable parameters,
trainable parameters in case of a partially updated model
version, and the size of the parameters.

Name #Params part. updated Size

MobileNetV2 3,504,872 1,281,000 14.3 MB

GoogLeNet 6,624,904 1,025,000 26.7 MB

ResNet-18 11,689,512 513,000 46.8 MB

ResNet-50 25,557,032 2,049,000 102.5 MB

ResNet-152 60,192,808 2,049,000 241.7 MB

(partially or fully updated) version of the initial model. The idea is

that the server has collected more data and improved the model’s

performance through further training. To represent this, we train

the initial models on the ImageNet validation dataset (𝐼𝑁𝑒𝑡𝑣𝑎𝑙)

from 2012 [29].𝑈3 is about training a model on a locally collected

dataset. It is likely that the locally collected data is slightly biased

and its’ distribution differs from that of the training data. To this

end, we created two different datasets: Coco-food-512 (𝐶𝐹 -512)
and Coco-outdoor-512 (𝐶𝑂-512). Both are subsets of the Coco

dataset [18] and contain 512 images each matching one of the

categories in the ImageNet dataset.
4
We train the model for 𝑈2

for ten epochs on 𝐼𝑁𝑒𝑡𝑣𝑎𝑙 and then retrain for five epochs per

iteration of𝑈3 on 𝐶𝐹 -512 or 𝐶𝑂-512.

Models. We list the set of model architectures we use for the

evaluation in Table 2. They are extensively analyzed architectures

in the computer vision domain, an active field of research. We

select them to cover a wide range of layers, storage sizes and

model complexities. For the implementation of the models we

slightly adapt the implementations of PyTorch. For fully updated

model versions we retrain all model parameters and for partially

updated model versions only the last fully connected layers.

4
For both datasets we give a detailed description of how we created them in our

GitHub repository.

239

Executing Experiments. To evaluate all approaches we per-

form multiple experiments. One experiment is a full run of the

evaluation flow for a given approach, model architecture, model

relation, and dataset. We execute every experiment five times for

all presented results and take the median computation time to

save and recover a model, respectively. The storage consumption

is constant across multiple runs of the same experiment.

To model a distributed setup, we simulate the evaluation flow

using three different machines. One to model a node, one to model

a server, and a third one to run an instance of MongoDB. This

allows us to test for all approaches the storage of a model on

one machine and have it identically recovered on another. All

machines have the same hardware and software setup: 96 GB

RAM, two Intel XeonGold 5220S processors with 18 cores, Python

3.5.8, PyTorch 1.7.1, and torchvision 0.8.2. They are connected via

100G InfiniBand and have access to the same external storage.

Pretrain Models. To evaluate all approaches for all model archi-

tectures, model relations, and datasets, we execute 80 different

experiments, each executed five times to provide median values.

The model training (especially for𝑈2) can take multiple hours per

experiment and always leads to the same model. Thus, to make

the extensive evaluation feasible, we train the models before

the actual experiments and load them from snapshots instead of

repeating the training procedure each time.

The MPA’s performance is highly dependent on the size of the

dataset. For𝑈2, we use a significantly larger dataset than for𝑈3

(see Table 1). This leads to a peak in storage consumption, TTS,

and TTR for the MPA in 𝑈2 while the other approaches show

similar results to 𝑈3. Including the data for 𝑈2 in comparison

plots, such as Figure 7, Figure 10, and Figure 11, does not add any

information but massively decreases the plots’ readability. For

this reason, we exclude the results for𝑈2 from them.

4.2 Storage Consumption
In this section, we analyze the amount of storage that every ap-

proach consumes to save a given model. The storage consumption
of a model does not include the amount of storage that is used to

save its base model.

Figure 7(a) and 7(b) show the storage consumption across the

use cases and approaches for fully and partially updated Mobile-

NetV2 versions trained on 𝐶𝐹 -512. Figure 7(c) and 7(d) show the

same setting for partially and fully updated ResNet-152 versions.

Baseline Approach. The numbers in Figure 7 indicate that nei-

ther the use case nor the model relation has an impact on the

storage consumption. During our evaluation we found the same

not only for the MobileNetV2 and the ResNet-152 but for all

model architectures. We also found that the storage consumption

is independent of the dataset.

These observations are expected and can be explained by the

fact that the BA saves a complete snapshot of each model includ-

ing its metadata, architecture, and parameters. The size of these

data does not change over the use cases and is independent of

the training dataset used as well as of the model relation.

Comparing Figure 7(b) and 7(d), we see that the storage con-

sumption is dependent on the model architecture. The Mobile-

NetV2 architecture consumes approximately 14MB while the

ResNet-152 consumes over 240MB. Figure 8 shows the storage

consumption using the baseline approach and number of param-

eters for all our model architectures. It confirms the observations

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

20

40

60

Co
ns

um
pt

io
n

in
 M

B

(a) fully updated MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

20

40

60

Co
ns

um
pt

io
n

in
 M

B

(b) par. updated MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

50

100

150

200

250

Co
ns

um
pt

io
n

in
 M

B

(c) fully updated ResNet-152

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

50

100

150

200

250

Co
ns

um
pt

io
n

in
 M

B

(d) partially updated ResNet-152

Baseline Param Update Model Prov

Figure 7: Comparison of the storage consumption across
approaches

mob
ilen

et

go
og

len
et

res
ne

t18

res
ne

t50

res
ne

t15
2

Model

0

100

200

Co
ns

um
pt

io
n

in
 M

B MB used
#params

20

40

60

No
. p

ar
am

s (
* 1

0^
6)

Figure 8: Storage consumption and number of parameters
per model using the baseline approach

and indicates that the storage consumption increases proportion-

ally with an increased number of parameters.

In summary, for the BA we observe that the storage con-
sumption depends on the number of parameters and is,
for a given model, independent of the use case, the dataset,
and the model relation.

Parameter Update Approach. Analyzing the storage consump-

tion for the parameter update approach (PUA) in Figure 7(a)

and 7(c), we observe that using the PUA does not significantly

decrease the storage consumption compared to BA.

The BA saves the architecture and a complete snapshot of the

parameters for every model. The PUA only saves the updated

parameters and refers to its base model for the unchanged pa-

rameters and the model architecture. For fully updated model

versions all model parameters are trainable and change between

related models. Therefore, the parameter update is equivalent to

240

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
2

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
40

100

200

Co
ns

um
pt

io
n

in
 M

B

(a) MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
2

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
40

100

200

Co
ns

um
pt

io
n

in
 M

B
(b) ResNet-152

trained on CF-512 trained on CO-512

Figure 9: Comparing the storage consumption using the
MPA across datasets.

a complete snapshot of all parameters, and the PUA only reduces

the storage consumption by the amount of storage used to save

the model architecture. With the model parameters being very

dominant for the storage consumption of both the BA and the

PUA, the differences in Figure 7(a) and 7(c) are insignificant.

On the other hand, Figure 7(b) and 7(d) show that for partially

updated model versions the storage consumption significantly

improves compared to the BA. With the exception of𝑈1, the PUA

lowers the storage consumption by 63.7% for the partially updated

MobileNetV2, and by 95.6% for the partially updated ResNet-

152 architecture. As presented in Table 2, for partially updated

model versions, a significantly lower number of parameters is

trainable. The parameter update does not have to contain all

model parameters but only the subset that has been changed

which results in a decreased storage consumption.

Overall, we observe that for fully updated model versions
the parameter update approach only marginally improves
the storage consumption, whereas for partially updated
model versions the improvement is noticeably higher.

Model Provenance Approach. Comparing the MPA’s storage

consumption for the MobileNetV2 in Figure 7(a) and 7(b), we

see that the MPA consumes significantly more storage than the

BA and the PUA. The opposite is the case for the ResNet-152. In

Figure 7(c) and 7(d), we see that the MPA outperforms the BA

and the PUA by up to 70% for fully updated model versions.

Overall, the critical factor is the ratio of provenance data size

and model parameter size. If the provenance data is small com-

pared to the size of the model parameters, the MPA will outper-

form the BA. If it is the other way around, the MPA will consume

more storage than the other two approaches.

Figure 9 shows the storage consumption using the MPA for

the MobileNetV2 and the ResNet-152 when trained on 𝐶𝐹 -512

and 𝐶𝑂-512. We observe that the storage consumption per use

case is similar, although the numbers in Figure 9(a) are for the

MobileNetV2 architecture, and the numbers in Figure 9(b) are for

the ResNet-152 architecture.

We observe that the model architecture and number of param-

eters do not significantly influence the storage consumption. The

storage consumption mainly depends on the size of the dataset

that we use to train the model. For a MobileNetV2, the dataset is

responsible for more than 99.9% of the storage consumption, and

whenever we use a larger dataset also the storage consumption

increases. 𝐶𝐹 -512, for example, is approximately 23 MB larger

than 𝐶𝑂-512, which is approximately the difference between

the storage consumption for all 𝑈3s. For 𝑈2, we always use the

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
in

 se
co

nd
s

(a) fully updated MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
in

 se
co

nd
s

(b) par. updated MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0.0

0.2

0.4

0.6

0.8

Ti
m

e
in

 se
co

nd
s

(c) fully updated ResNet-152

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0.0

0.2

0.4

0.6

0.8

Ti
m

e
in

 se
co

nd
s

(d) partially updated ResNet-152

Baseline Param Update Model Prov

Figure 10: Comparison of the median time-to-save (TTS)
across approaches. All models in 𝑈3 were trained on the
Custom-Coco-Outdoor-512 dataset.

smaller version of the ImageNet data (𝑚𝐼𝑁𝑒𝑡𝑣𝑎𝑙) and see no dif-

ference in the storage consumption. For𝑈1 every approach uses

the BA’s logic which leads to different storage consumptions

across model architectures.

This observation is expected because the MPA saves only the

model provenance data. In addition to small metadata, the prove-

nance data also contain the training dataset which is, relative to

the other provenance data, significantly larger.

For the model provenance approach, we observe that the stor-
age consumption mainly depends on the training dataset
and is almost independent of the model architecture. Whe-
ther the MPA outperforms the BA depends on the ratio
between the training set size and model size.

4.3 Time to Save
In this section, we analyze the amount of time it takes to save a

given model for all approaches. The time-to-save (TTS) includes

the time to extract the model data and the time to persist them.

Throughout this section, we identify the models by the use case

they were saved in. For example, if we refer to the TTS of (model)

𝑈2, we refer to the time that we needed in𝑈2 to save the model.

Baseline Approach. In Figure 10, we compare the TTS using the

different approaches in the same settings. For the BA we find that

the TTS strongly depends on the number of parameters. Saving

a full MobileNetV2 takes around 0.1 s, saving a full ResNet-152

takes around 0.8 s. This can be explained by the fact that the

main steps when saving a model are to hash and serialize the

parameters and to persist all model data which mostly consists

of serialized parameters.

241

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

2

4

6

8

Ti
m

e
in

 se
co

nd
s

(a) fully updated MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

2

4

6

8

Ti
m

e
in

 se
co

nd
s

(b) par. updated MobileNetV2

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

5

10

15

Ti
m

e
in

 se
co

nd
s

(c) fully updated ResNet-152

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

Use case

0

5

10

15

Ti
m

e
in

 se
co

nd
s

(d) partially updated ResNet-152

Baseline Param Update Model Prov

Figure 11: Comparison of the median time-to-recover
(TTR) for the ResNet-152 across approaches. All models in
𝑈3 were trained on the Custom-Coco-Outdoor-512 dataset.

Parameter Update Approach. For the PUA, the TTS depends
on the number of parameters in the parameter update. For fully

updated model versions the PUA’s TTS is similar to the BA’s for

both model architectures because the amount of parameters to

save is equivalent to the number of the total parameters. When

the number of parameters in the parameter update decreases, as

it is the case for partially updated model versions, also the TTS

decreases. In this case, the PUA outperforms the BA by up to

28.5% and 51.7% for MobileNetV2 and ResNet-152, respectively.

Model Provenance Approach. The times in Figure 10(c) suggest

that the MPA has the potential to outperform the BA and the

PUA by up to 15.8%; especially when the MPA uses less storage

than the BA and the PUA. Figure 10(a) shows that there are also

scenarios where the MPA is drastically outperformed by the BA

and the PUA, which is mainly the case when the MPA’s storage

consumption is relatively high.

4.4 Time to Recover
In this section, we analyze the time-to-recover (TTR) which de-

scribes the amount of time it takes to load the model data and

to recover the model from it. We identify the models by the use

case they were saved in. For example, if we refer to the TTR of

(the model) 𝑈2, we refer to the time that we needed to recover

the model that we saved in𝑈2.

Baseline Approach. In Figure 11, we show the TTR for all ap-

proaches across different scenarios for the MobileNetV2 and the

ResNet-152. We observe that for the BA the TTR is not dependent

on the use case and the model relation. This is due to the fact

that the BA saves every model independently of other models.

mob
ile

ne
t

go
og

len
et

re
sn

et
18

re
sn

et
50

re
sn

et
15

2

Use case description

0.0

0.5

1.0

1.5

Ti
m

e
in

 se
co

nd
s check params

recover model
load

Figure 12: Baseline time-to-recover (TTR) for different
model architectures in𝑈3-1-3, check env time excluded.

In Figure 12 we show the TTR with respect to the model

architecture. The process to recover a model consists of four

steps: loading the model data, recovering the model from the data,

verifying if the environment matches the given information, and

verifying if the model parameters have been correctly recovered.

We found that verifying the environment takes over one second

and adds a constant time to the recover process regardless of

the model architecture. For clarity we exclude this time from

Figure 12 and only show the remaining categories.

We can see that the different steps but also the overall TTR

strongly depend on the model architecture. The more parameters,

the more data to load, and the more data to process, to recover,

and verify. The only exception is the TTR for GoogLeNet, al-

though it has fewer parameters than the ResNet-18 its recover
time is noticeably higher and consequently also its total TTR.

The reason for this peak – in comparison to all other models

– is a disproportional high computation time for GoogLeNet’s

initialization routine. We found that initializing an instance of

a GoogLeNet takes approximately seven times longer than ini-

tializing a ResNet-18, thus, it significantly slows down the model

recovery phase.

Parameter Update Approach. In Figure 11 we show that the

PUA does not outperform the BA for any use case, model archi-

tecture or model relation. However, it is interesting that the TTR

for the PUA is not drastically higher even though they increase

with every iteration of𝑈3. For example, to approximately double

the TTR of 𝑈1 in Figure 11(a) we would have to save a Mobile-

NetV2 that transitively refers to 18 base models; for Figure 11(b)

this number rises to 25.

The reason for the increasing TTR per iteration of 𝑈3 is de-

scribed in Section 3.2; recovering a derived model𝑀 (with 𝐵 →
𝑀) that is saved using the PUA is a recursive process and in-

cludes recovering its base model 𝐵. Taking into account how the

models that we create during the evaluation flow relate to each

other (Figure 1), we can explain the two staircase patterns. To

recover a model𝑈3-1-𝑛 , the PUA has to recover all its base models:

𝑈
3-1-(𝑛-1) to 𝑈3-1-1, and 𝑈1. To recover a model 𝑈3-2-𝑛 , the PUA

has to recover all its base models:𝑈
3-2-(𝑛-1) to𝑈3-2-1,𝑈2, and𝑈1.

The higher 𝑛, the more base models the PUA has to recover and

the higher the TTR. For partially updated model versions the

PUA has to load the same number of base models, but a smaller

amount of data which, results in a shorter TTR compared to fully

updated model versions.

When using the parameter update approach, the time-to-
recover (TTR) depends on themodel architecture, the num-
ber of parameters, model relation, and use case.

242

Model Provenance Approach. To recover a model saved using

the MPA, we have to reproduce the model training which can

take a significant amount of time. For the MPA, we ran the model

training only for two epochs with two batches. The time con-

sumption for this training procedure might be not as high as for

realistic use cases, but it is sufficient to ensure that our prototype

is capable of recovering all data necessary to repeat the model

training. Moreover, it results in a training time that is propor-

tional to the complexity of the model architecture and the model

relation.

We verified that our models are reproducible across machines

by using our probing tool introduced in Section 2.4. To test that

the MPA is capable of reproducing model training that lead to

equal models we performed a separate experiment that loads the

same models twice using the MPA and compares them.

Figure 11 shows that the MPA is not capable of outperforming

the BA or the PUA. We additionally have to keep in mind that

we only simulated and not fully executed model training to make

an extensive evaluation feasible.

The MPA’s TTR shows a similar staircase pattern as the PUA.

The reason is the model dependencies we already described for

the PUA. The only difference is that the MPA does not apply a

parameter update but reproduces the model training.

In a detailed analysis we found that the main factor for the

TTR is the model training. Since the MPA reproduces the com-

plete training process, this leads to consistently slower TTR. How

much longer the TTR for the MPA is, depends on many factors

including the model architecture, the size of the dataset, the num-

ber of epochs, and the available hardware. For𝑈1, all approaches

use the BA’s logic which results in a similar TTR. We observe

that the MPA’s TTR in𝑈1 is noticeably lower than for the other

approaches. Since we use a simulated model training for theMPA,

we deactivated a set of automatic checks that also include a check

of the current environment. The environment check takes more

than a second and not performing it is the reason for the MPA’s

lower TTR in𝑈1.

For the model provenance approach we see that the time-to-
recover (TTR) mainly depends on the model architecture
and the corresponding time to train the model.

4.5 Deterministic Training
For the MPA, it is critical that the training is executed determin-

istically to be able to reproduce the model. To analyze the impact

of a deterministic execution on the training time, we perform

multiple training runs in a deterministic and non-deterministic

way. As models, we use the ResNet-18, the ResNet-50, and the

ResNet-152. We train them for five epochs on the𝐶𝑂-512 dataset

using an NVIDIA A100-SXM4-40GB GPU with batch size 64. This

is equivalent to one iteration of𝑈3.

Figure 13 shows the median training times of five runs for the

time consumed to load the data on the GPU, the forward pass,

and the backward pass. The data indicate that training a model

deterministically is slower in the forward and the backward pass

while the time to load the data to the GPU is not influenced.

For the ResNet-50 and ResNet-152 we see that a deterministic

training is not significantly slower. For ResNet-18 this is not the

case, here especially the backward pass takes more than twice the

time. The reason for this difference is that in our implementations

the ResNet-50 and the ResNet-152 architecture make use of the

same layers, while the ResNet-18 uses a similar but not identical

set of layers.

to
 de

vic
e

for
wa

rd
ba

ck
wa

rd

0.00

0.25

0.50

0.75

Ti
m

e
in

 se
co

nd
s

ResNet18

to
 de

vic
e

for
wa

rd
ba

ck
wa

rd

0.00

1.00

2.00

Ti
m

e
in

 se
co

nd
s

ResNet50

to
 de

vic
e

for
wa

rd
ba

ck
wa

rd

0.00

5.00

10.00

Ti
m

e
in

 se
co

nd
s

ResNet152
non-deterministic deterministic

Figure 13: Median times for loading the data to the GPU,
processing the forward pass, and processing the backward
pass for five epochs on 𝐶𝑂-512 in deterministic and non-
deterministic mode.

Performing a more extensive experiment over ten times the

number of epochs, we find that the times per batch are close to

constant for all models. Therefore, we can expect to see the same

relative slowdown due to deterministic training regardless of the

number of epochs or number of images in the dataset.

In summary, we find that using only deterministic oper-
ations slows down the training. The impact of the deter-
ministic training time depends on the model architecture.

4.6 Distributed Evaluation Flows
In this section, we investigate how the different approaches per-

form in a scenario with more nodes and many more models than

used in previous experiments.

We refer to the evaluation flow used so far as the standard
evaluation flow. As described in Section 4.1, the standard evalua-

tion flow consists of one iteration of𝑈1 and𝑈2, four iterations of

𝑈3-1 and𝑈3-2, and considers one node. This adds up to ten saved

and recovered models per execution and allows us to extensively

evaluate all approaches for many different model architectures,

datasets, and model relations.

We define three larger distributed evaluation flows listed in Ta-

ble 3. For DIST-5, we consider five nodes, for DIST-10 ten nodes,

and for DIST-20 20 nodes. Next to the increased number of nodes,

we execute ten (instead of four) iterations of 𝑈3-1 and 𝑈3-2 for

all new evaluation flows. This leads to a number of 102 (DIST-5),

202 (DIST-10), or 402 (DIST-20) saved and recovered models per

run.

Table 3: Overview of different evaluation flows.

name #nodes #models

standard 1 10

DIST-5 5 102

DIST-10 10 202

DIST-20 20 402

For all results presented in the following, we execute each

evaluation flow using the MobileNetV2 architecture and fully

updated model versions as the model relation. We run every

experiment three times to provide median values and use the

same setup as described in Section 4.1.

243

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

1-
5

U-
3-

1-
6

U-
3-

1-
7

U-
3-

1-
8

U-
3-

1-
9

U-
3-

1-
10

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

U-
3-

2-
5

U-
3-

2-
6

U-
3-

2-
7

U-
3-

2-
8

U-
3-

2-
9

U-
3-

2-
10

Use case

0.0

0.1

0.2

0.3

0.4

Ti
m

e
in

 se
co

nd
s

Baseline Param Update Model Prov

Figure 14: Comparison of the median time-to-save (TTS)
for fully updated MobileNetV2 versions across approaches
on the DIST-20 evaluation flow. All models in 𝑈3 were
trained on the Custom-Coco-Outdoor-512 dataset.

Storage Consumption. Analyzing the raw numbers for DIST-5,

DIST-10, and DIST-20, we see that the storage consumption for

the BA strongly depends on the number of parameters. For the

PUA, the critical factor is the size of the parameter update, and for

the MPA, the storage consumption is dominated by the training

dataset. In detail, we find that the storage consumption is, for a

given approach and use case, constant across all evaluation flows

in Table 3 and does not vary across different executions of the

same experiment.

We conclude that the detailed discussion of the storage con-

sumption for the standard evaluation flow in Section 4.2 also

holds for all other evaluation flowswe have evaluated. This shows

once more the potential of the PUA and the MPA to outperform

the BA in terms of storage consumption for certain scenarios.

Time-to-save. All distributed evaluation flows (DIST-5, DIST-

10, and DIST-20) show very similar numbers and trends. The

only difference between the distributed evaluation flows is the

amount of measured times per use case which dependents on the

number of used nodes.

Figure 14 shows the TTS for the DIST-20 evaluation flow. Exe-

cuting the evaluation flow with 20 nodes, results in 20 measure-

ments per iteration of 𝑈3. The numbers for the individual nodes

are very similar for a given use case. To increase the readability,

we aggregate the values per iteration of a use case by taking the

median time of all nodes.

We see that the TTS depends on the approach and varies only

slightly across the different iterations of the use cases. Saving

a fully updated MobileNetV2 version using the BA or the PUA

takes just under 0.1 seconds. Saving the same models using the

MPA takes under 0.4 seconds.

The reason that the TTS for the PUA is not lower than the

TTS for the BA is that we save fully updated and not partially

updated model versions. Thus, both the BA and the PUA save

an almost equal amount of data which takes approximately the

same amount of time.

The TTS for the MPA is significantly higher than the TTS for

both other approaches because the MPA has to save significantly

more data. The BA and the PUA have to save around 14 MB,

whereas the MPA has to save around 72 MB.

U-
1

U-
3-

1-
1

U-
3-

1-
2

U-
3-

1-
3

U-
3-

1-
4

U-
3-

1-
5

U-
3-

1-
6

U-
3-

1-
7

U-
3-

1-
8

U-
3-

1-
9

U-
3-

1-
10

U-
3-

2-
1

U-
3-

2-
2

U-
3-

2-
3

U-
3-

2-
4

U-
3-

2-
5

U-
3-

2-
6

U-
3-

2-
7

U-
3-

2-
8

U-
3-

2-
9

U-
3-

2-
10

Use case

0

5

10

15

Ti
m

e
in

 se
co

nd
s

Baseline Param Update Model Prov

Figure 15: Comparison of the median time-to-recover
(TTR) for fully updated MobileNetV2 versions across ap-
proaches on the DIST-20 evaluation flow. All models in 𝑈3

were trained on the Custom-Coco-Outdoor-512 dataset.

Comparing these numbers to the ones from Section 4.3, we see

that we can find approximately equal TTSs and the same trends

for the larger evaluation flows and the standard evaluation flow.

Time-to-recover. For the TTR, we also show and analyze the

results for DIST-20 and take the median times of all nodes per

use case. The evaluation of DIST-5, DIST-10, and DIST-20 show

equal numbers and trends.

In Figure 15, we show that the TTR for the BA stays on a

constant level across all use cases. The reason is that the BA

saves all models independently of each other.

The TTR for the PUA and the MPA follows a staircase pattern

starting at𝑈1 and𝑈3-2-1. This is due to the PUA’s and the MPA’s

recursive recovery process and how the saved models are related

to each other. The TTR for the MPA is significantly higher be-

cause we have to repeat the model training, whereas, for the

PUA, we apply parameter updates.

Overall, the patterns and absolute numbers we see in Figure 15

for DIST-20 match the numbers and trends we already have

seen for the standard evaluation flow in Figure 11(a). The only

difference between the standard and the DIST-20 evaluation flow

is that for DIST-20 we have ten instead of four iterations of𝑈3.

This leads to higher maximum TTRs.

Summarizing the results of evaluating all approaches on more

extensive evaluation flows, we find that the storage consumma-
tion is constant regardless of the evaluation flow. The TTS
and TTR show similar numbers and the same trends across
the standard and all of themore extensive evaluation flows.
This shows that all approaches scale to evaluation flows
similar to our motivational example.

4.7 Discussion
In this section, we discuss which approach is the most suitable

for a given scenario, as well as the storage-retraining trade-off

and the impact of combining the three approaches.

Optimized Time-to-recover. In each of the scenarios presented,

we find one approach (PUA or MPA) that outperforms the BA in

terms of storage consumption and time-to-save (TTS). The draw-

back of these approaches is an increased TTR that is marginally

higher for the PUA and drastically higher for the MPA. Therefore,

244

if, for a given setting, the TTR has the highest priority, the BA is

the preferred choice.

Optimized Storage Consumption and Time-to-save. If we as-

sume that models are rarely recovered, but derived models are

saved frequently, we can focus on the TTS and the storage con-

sumption.

If we have no information about the hardware environment

and if the dataset is larger than the model, the PUA is the pre-

ferred choice. If we work in a domain with large models, but small

datasets (for example, natural language processing) or frequent

model training on small datasets, the MPA is the best approach

for storage consumption and TTS.

Especially for the MPA, it is crucial to consider the overall

environment and setup. A scenario in which the MPA could

be the preferred choice is when the training data is saved and

transferred to a central server regardless of the approach we

choose (e.g., for analysis purposes). In this case, the MPA would

not have to save the dataset and the storage consumption reduces

to the training information.

The MPA’s performance is particularly dependent on the do-

main we operate in because this usually determines the approxi-

mate size of the dataset, the complexity of the model, and the time

to train the model. For example, for natural language process-

ing, we would expect complex models and long training times

but small datasets. For video processing, we would expect to see

large datasets and moderately complex models and training times

compared to natural language processing. The perfect domain

for the MPA would be short training times, small datasets, and

large models.

Storage-Retraining Tradeoff. When choosing an approach for

a specific scenario, we always have a storage-retraining tradeoff

problem. Either, we chose the BA that does not optimize the

storage consumption, but the TTR. Or, we choose the PUA or the

MPA to reduce the storage consumption and accept their effect

on the TTR.

For a given scenario, we should always consider how much

TTR (and resources) we want to invest to save storage and band-

width in case we have to transmit the model.

Adaptive Approach. A possible direction for future work is to

use a heuristic that decides which is the most suitable approach

(BA, PUA, or the MPA) for every model. One heuristic could

be based on the fact that the BA and the PUA mainly depend

on the model parameters, whereas the MPA primarily depends

on the dataset. A more complex heuristic could be based on a

formalized tradeoff as presented by Derakhshan et al. [5] and

Vartak et al. [40] combined with some given parameters, such as,

maximum storage consumption or TTR.

5 RELATEDWORK
Model and life cycle management tackle the problem of docu-

menting and monitoring ML experiments and resulting models.

While Schelter et al. [31] give an overview of the conceptual,

engineering, and data-processing related challenges in this field,

ModelDB [41],ModelDB-2.0 [42]ModelHub [21],ModelKB [9], and

Runway [39] describe software solutions for model management

and life cycle management.

Both ModelKB and Runway focus on automatically managing

ML experiments by saving corresponding metadata but not the

model itself.ModelKB considers saving, sharing, and reproducing

of models as future work, whereas Runway only saves references

to models and artifacts. Both approaches do not provide metadata

detailed enough to reproduce the model training.

ModelDB and its successorModelDB-2.0 are git-like versioning
tools for model management. ModelDB-2.0 focuses on saving the

ingredients of a model, such as code artifacts, training configu-

ration, and the environment. In contrast with MMlib, the level

of detail for the saved information is not sufficient to reproduce

model training in a way that would lead to the exact same mod-

els. In addition to metadata and code, ModelDB-2.0 optionally

saves model parameters. MMlib’s baseline serializes a model by

using the functionality offered by PyTorch. At the time of writing,

ModelDB-2.0 makes use of the same method. Therefore, MMlib’s

baseline and ModelDB-2.0 can be seen as equivalent approaches

when it comes to saving a model.

ModelHub’s parameter archival storage (PAS) “minimizes [the]

storage footprint and accelerates query workloads with minimal

loss of accuracy” [21]. It is the approach closest to MMlib, but its

design is orthogonal in two aspects. (1) We designed MMlib to

recover the exact same models. In contrast to that, the ModelHub

authors assume that it is in most cases sufficient to recover an

approximate version of a model. This is why ModelHub saves

model parameters in a segmented format. The first step to recover

a model is to load the most significant bits of the model parame-

ters. Only when requested, ModelHub will load the remaining

segments of the parameters to recover the complete model from

external storage. (2) MMlib was designed under the assumption

of frequent model updates (𝑈3) but rarely occurring model re-

coveries (𝑈4) that, thus, can be time-consuming. ModelHub is

optimized for recovering (approximate) models (𝑈4) and does not

focus on frequently saving new models (𝑈3). This can be seen

by the multi-stage model recovery process described above or

by their complex algorithms (worse than quadratic run time) for

saving a given set of models.

6 CONCLUSION
In this paper, we investigate the problem of storing and recover-

ing machine learning models exactly in distributed environments.

We present three approaches to efficiently manage DL models

with regards to storage consumption, time-to-save (TTS), and

time-to-recover (TTR). We develop a baseline approach (BA) and

two advanced approaches: a parameter update approach (PUA)

and a model provenance approach (MPA). Our evaluation shows

that the provenance approach outperforms the baseline by up to

15.8% in TTS and 70.0% in storage consumption. The parameter

update approach also outperforms the baseline by up to 51.7% in

TTS and 95.6% in storage consumption. In distributed environ-

ments of different sizes, all approaches show consistent results

with respect to storage consumption, TTS, and TTR across all

experiments. Based on our findings on how the model archi-

tecture, model relation, and training dataset size influence the

approaches’ performance, we discuss the best approach for given

scenarios and present ideas to combine them to optimize perfor-

mance further. All approaches and the probing tool to verify the

reproducibility of model architectures are publicly available in

our Python library MMlib.

ACKNOWLEDGMENTS
This work was partially funded by the German Ministry for Education

and Research (ref. 01IS18025A and ref. 01IS18037A), the German Research

Foundation (ref. 414984028), and the European Union’s Horizon 2020

research and innovation programme (ref. 957407).

245

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh

Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,

Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,

Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda

Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan

Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Systems. https://www.tensorflow.org/ Software available

from tensorflow.org.

[2] Pulkit Agrawal, Rajat Arya, Aanchal Bindal, Sandeep Bhatia, Anupriya Gag-

neja, Joseph Godlewski, Yucheng Low, Timothy Muss, Mudit Manu Paliwal,

Sethu Raman, and others. 2019. Data platform for machine learning. In Proceed-
ings of the 2019 International Conference on Management of Data. 1803–1816.

[3] Lorena A Barba. 2018. Terminologies for reproducible research. arXiv preprint
arXiv:1802.03311 (2018).

[4] Fernando Chirigati, Rémi Rampin, Dennis Shasha, and Juliana Freire. 2016.

ReproZip: Computational Reproducibility With Ease. In Proceedings of the 2016
International Conference on Management of Data (SIGMOD ’16). ACM, 2085–

2088. https://doi.org/10.1145/2882903.2899401 event-place: San Francisco,

California, USA.

[5] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann

Rabl, and Volker Markl. 2020. Optimizing Machine Learning Workloads in

Collaborative Environments. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. 1701–1716.

[6] ECMA. 2017. ECMA-404: The JSON Data Interchange Syntax. https://www.

ecma-international.org/publications-and-standards/standards/ecma-404/

[7] Facebook. 2021. PyTorch. https://www.pytorch.org

[8] Gharib Gharibi, Vijay Walunj, Rakan Alanazi, Sirisha Rella, and Yugyung Lee.

2019. Automated management of deep learning experiments. In Proceedings of
the 3rd International Workshop on Data Management for End-to-End Machine
Learning. 1–4.

[9] Gharib Gharibi, Vijay Walunj, Sirisha Rella, and Yugyung Lee. 2019. ModelKB:

Towards Automated Management of the Modeling Lifecycle in Deep Learning.

In 2019 IEEE/ACM 7th International Workshop on Realizing Artificial Intelligence
Synergies in Software Engineering (RAISE). 28–34.

[10] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of

training deep feedforward neural networks. In Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR Workshop

and Conference Proceedings, 249–256.

[11] David Goldberg. 1991. What every computer scientist should know about

floating-point arithmetic. ACM Computing Surveys (CSUR) 23, 1 (1991), 5–48.
Publisher: ACM New York, NY, USA.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning.
MIT Press.

[13] Google. 2021. Machine Learning Glossary. https://developers.google.com/

machine-learning/glossary

[14] Sorin Grigorescu, Bogdan Trasnea, Tiberiu Cocias, and Gigel Macesanu. 2020.

A survey of deep learning techniques for autonomous driving. Journal of Field
Robotics 37, 3 (2020), 362–386. Publisher: Wiley Online Library.

[15] Alex Guazzelli, Michael Zeller, Wen-Ching Lin, Graham Williams, and others.

2009. PMML: An open standard for sharing models. R J. 1, 1 (2009), 60.
[16] Matthew Hartley and Tjelvar SG Olsson. 2020. dtoolAI: Reproducibility for

Deep Learning. Patterns 1, 5 (2020), 100073. Publisher: Elsevier.
[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep resid-

ual learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 770–778.

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,

James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr

Dollár. 2015. Microsoft COCO: Common Objects in Context. _eprint:

1405.0312.

[19] Association for Computing Machinery. 2021. Artifact Review

and Badging. https://www.acm.org/publications/policies/

artifact-review-and-badging-current

[20] Ralph C Merkle. 1987. A digital signature based on a conventional encryp-

tion function. In Conference on the theory and application of cryptographic
techniques. Springer, 369–378.

[21] Hui Miao, Ang Li, Larry S Davis, and Amol Deshpande. 2017. Modelhub: Deep

learning lifecycle management. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE). IEEE, 1393–1394.

[22] MongoDB. 2021. MongoDB. https://www.mongodb.com

[23] National Academies of Sciences, Engineering, and Medicine and others. 2019.

Reproducibility and replicability in science. National Academies Press.

[24] NVIDIA. 2021. CUDA Toolkit Documentation – Floating Point and IEEE 754

Compliance for NVIDIA GPUs. https://docs.nvidia.com/cuda/floating-point/

index.html

[25] ONNX. 2021. ONNX. https://onnx.ai/

[26] OpenAI. 2018. AI and Compute. https://openai.com/blog/ai-and-compute/

[27] Jim Pivarski, Collin Bennett, and Robert L Grossman. 2016. Deploying analytics

with the portable format for analytics (PFA). In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.
579–588.

[28] Duncan Riach. 2019. Determinism in Deep Learning. Published: NVIDIA’s

GPU Technology Conference.

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, and

others. 2015. Imagenet large scale visual recognition challenge. International
journal of computer vision 115, 3 (2015), 211–252. Publisher: Springer.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and

Liang-Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottle-

necks. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 4510–4520.

[31] Sebastian Schelter, Felix Bießmann, Tim Januschowski, David Salinas, Stephan

Seufert, and Gyuri Szarvas. 2018. On Challenges in Machine Learning Model

Management. IEEE Data Eng. Bull. 41, 4 (2018), 5–15.
[32] Sebastian Schelter, Joos-Hendrik Boese, Johannes Kirschnick, Thoralf Klein,

and Stephan Seufert. 2017. Automatically tracking metadata and provenance

of machine learning experiments. In Machine Learning Systems Workshop at
NIPS. 27–29.

[33] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo, and

Dan Dennison. 2015. Hidden technical debt in machine learning systems.

Advances in neural information processing systems 28 (2015), 2503–2511.
[34] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data

augmentation for deep learning. Journal of Big Data 6, 1 (2019), 1–48. Publisher:
Springer.

[35] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. 2014. Dropout: a simple way to prevent neural networks

from overfitting. The journal of machine learning research 15, 1 (2014), 1929–

1958. Publisher: JMLR. org.

[36] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,

Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-

binovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1–9.

[37] Tesla. 2021. Tesla AI Day. https://www.youtube.com/watch?v=

j0z4FweCy4M&t=8607s

[38] Lisa Torrey and Jude Shavlik. 2010. Transfer learning. In Handbook of re-
search on machine learning applications and trends: algorithms, methods, and
techniques. IGI global, 242–264.

[39] Jason Tsay, Todd Mummert, Norman Bobroff, Alan Braz, Peter Westerink, and

Martin Hirzel. 2018. Runway: machine learning model experiment manage-

ment tool.

[40] Manasi Vartak, Joana M F. da Trindade, Samuel Madden, and Matei Zaharia.

2018. Mistique: A system to store and query model intermediates for model

diagnosis. In Proceedings of the 2018 International Conference on Management
of Data. 1285–1300.

[41] Manasi Vartak, Harihar Subramanyam, Wei-En Lee, Srinidhi Viswanathan,

Saadiyah Husnoo, Samuel Madden, and Matei Zaharia. 2016. ModelDB: a sys-

tem for machine learning model management. In Proceedings of the Workshop
on Human-In-the-Loop Data Analytics. 1–3.

[42] VertaAI. 2021. ModelDB: An open-source system for Machine Learning model

versioning, metadata, and experiment management. https://github.com/

VertaAI/modeldb

[43] Geoffrey I Webb, Roy Hyde, Hong Cao, Hai Long Nguyen, and Francois Petit-

jean. 2016. Characterizing concept drift. Data Mining and Knowledge Discovery
30, 4 (2016), 964–994. Publisher: Springer.

246

