
Integrating the Orca Optimizer into MySQL
Arunprasad P. Marathe, Shu Lin, Weidong Yu, Kareem El Gebaly, Per-Åke Larson, Calvin Sun

Huawei Technologies Canada Co., Ltd.
{arun.marathe,shu.lin,weidong.yu,kareem.el.gebaly1,calvin.sun3}@huawei.com,gpalarson@outlook.com

ABSTRACT
The MySQL query optimizer was designed for relatively sim-
ple, OLTP-type queries; for more complex queries its limitations
quickly become apparent. Join order optimization, for example,
considers only left-deep plans, and selects the join order using a
greedy algorithm. Instead of continuing to patch the MySQL op-
timizer, why not delegate optimization of more complex queries
to another more capable optimizer? This paper reports on our
experience with integrating the Orca optimizer into MySQL. Orca
is an extensible open-source query optimizer—originally used by
Pivotal’s Greenplum DBMS—specifically designed for demanding
analytical workloads. Queries submitted to MySQL are routed
to Orca for optimization, and the resulting plans are returned
to MySQL for execution. Metadata and statistical information
needed during optimization is retrieved from MySQL’s data dic-
tionary. Experimental results show substantial performance gains.
On the TPC-DS benchmark, Orca’s plans were over 10X faster
on 10 of the 99 queries, and over 100X faster on 3 queries.

1 INTRODUCTION
Huawei’s cloud platform includes multiple database offerings
under the unifying brand GaussDB. GaussDB for MySQL—also
marketed with the name ‘Taurus’—is a cloud-native database
service, fully compatible with MySQL. Taurus separates compute
and storage. Data is divided into slices that are distributed among
a pool of Page Stores. The DBMS frontend is a slightly modified
version of MySQL 8.0.

Traditionally, MySQL has been used for transactional work-
loads, but often such workloads also contain some fraction of
more complex analytical queries—on which users expect reason-
ably good performance. Cloud service providers such as Amazon,
Alibaba, and Huawei are observing this trend in cloud deploy-
ments [2, 4].

In Huawei’s case, Taurus currently relies on the query op-
timizer in MySQL 8.0. The optimizer does a competent job on
OLTP-type workloads consisting of relatively simple queries with
a few joins, but falls short on more complex queries, producing
plans that are sometimes orders of magnitude slower than the op-
timal plans. In particular, it optimizes one SELECT block at a time
whose plan follows a somewhat rigid pattern: first a sequence of
joins; followed by grouping and aggregation; then a filter opera-
tion if a HAVING clause is present; and finally an optional sort to
satisfy an ORDER BY clause. The MySQL optimizer may produce
sub-optimal plans for several reasons.

(1) It generates only left-deep join plans; bushy plans are not
supported.

(2) It computes the join order using a greedy algorithm, which
does not guarantee optimality.

© 2022 Copyright held by the owner/author(s). Published in Proceedings of the
25th International Conference on Extending Database Technology (EDBT), 29th
March-1st April, 2022, ISBN 978-3-89318-085-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

(3) It does not consistently refactor predicates with OR to pull
out common terms. This may, for example, prevent using
a hash join.

(4) It does not consider pushing aggregation below joins, or
doing partial aggregations followed by final ones.

(5) It can only push predicates below GROUP BY for derived
tables, but not for subqueries.

Faced with these optimizer shortcomings, we considered two
options: either extend the MySQL optimizer or attempt to inte-
grate into MySQL an existing query optimizer capable of handling
complex queries.

We rejected the first approach because the MySQL optimizer
is not designed to be extensible [18], and does not include a
framework for rule-based query rewrites or query transforma-
tions. This makes it difficult to extend the optimizer with new
transformation rules—for example, pushing aggregation below
join, doing partial aggregations, or decorrelating subqueries—and
ensure that the rules are applied consistently whenever possible
during the optimization process.

Orca, on the other hand, is a relatively feature-rich, open-
source query optimizer, specifically designed to optimize ana-
lytical queries [22], especially on MPP systems. We decided to
explore whether and how optimization could be delegated to
Orca, and the resulting plans executed by MySQL. How well
Orca integrates with a non-MPP system such as MySQL is an
interesting question by itself. This paper describes how the inte-
gration was done, issues found, and reports the improvements in
query performance observed on the TPC-H and TPC-DS queries.

The rest of the paper is organized as follows. To set the stage,
we first give an overview of the Taurus system, and outline the
architecture of the MySQL optimizer in Section 2. A high-level
description of the chosen integration between MySQL and Orca is
provided in Section 3. In order for the integration to work, query
parse trees and plan trees need to be translated back and forth
between MySQL and Orca as described in Section 4. Orca’s exten-
sibility API requires a metadata provider to be written for each
target system. Such a provider for MySQL metadata is described
in Section 5. Experimental evaluation appears in Section 6. The
lessons learned from the integration exercise—in considerable
detail—are gathered in Section 7. The related work is surveyed
in Section 8. Finally, conclusions and future work are described
in Section 9.

2 OVERVIEW OF TAURUS AND MySQL
OPTIMIZER

2.1 Taurus Architecture
A brief overview of the Taurus design appears below; a more
detailed description can be found in [6].

Taurus separates compute and storage, and relies only on
append-only storage. As illustrated in Fig. 1, a Taurus database
system consists of four major logical components: database fron-
tends, a Storage Abstraction Layer (SAL), Log Stores, and Page
Stores. These components are distributed between two physi-
cal layers: a compute layer and a storage layer. The database is

Industrial & Application Paper

Series ISSN: 2367-2005 511 10.48786/edbt.2022.45

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2022.45

divided into fixed-size (10 GB) segments called slices that are dis-
tributed among multiple Page Stores. Log Stores and Page Stores
are multi-tenant services shared by many database servers.

Taurus is designed to work with different database frontends:
MySQL, PostgreSQL, and openGauss. The frontend layer consists
of one master that can serve both read and write queries, and up to
15 read replicas that execute read queries only. A frontend server
is responsible for accepting incoming connections, optimizing
and executing queries, and managing transactions. All updates
are handled by the master. The master makes modifications to
database pages persistent by synchronously writing log records,
in triplicate, to the durable storage in Log Stores. The master also
periodically communicates the location of the latest log records
to all of the read-only replicas so that they can read the latest log
entries, and update any affected pages in their buffer pools.

Figure 1: Taurus architecture.

The Storage Abstraction Layer (SAL) is an independent com-
ponent running on the frontend servers. It isolates the frontends
from the underlying complexity of remote storage, slicing of the
database, recovery, and read replica synchronization. SAL is re-
sponsible for writing log records to Log Stores, distributing them
to Page Stores, and reading pages from Page Stores. SAL is also
responsible for creating, managing, and destroying slices in Page
Stores and routing page read requests to Page Stores.

A Log Store is a service executing in the storage layer responsi-
ble for storing log records durably. Once all log records belonging
to a transaction have been made durable, transaction completion
can be acknowledged to the client. Log Stores have two main
functions. First and foremost, they ensure the durability of log
records. Second, they also serve log records to read replicas so
that the replicas can apply the log records to pages in their buffer
pools.

Page Store servers are also located in the storage layer. A
Page Store server hosts slices from multiple database frontends
(tenants), but each slice contains table and index data from only
one database, thus ensuring tenant-level data separation. The
main function of a Page Store is to keep pages up-to-date, and
serve read requests from masters and replicas. A Page Store
receives log records from multiple masters for the pages that
it hosts and applies them to bring pages up-to-date so they are
ready to be served.

2.2 MySQL Query Optimization
As mentioned in Section 2.1, MySQL is one of the frontend
DBMS’s that Taurus supports, and in that configuration, MySQL’s
query optimizer and its execution engine compile and execute
the submitted queries.

Fig. 2 illustrates the high-level architecture of MySQL query
optimization and execution. The Parser and Resolver layers gen-
erate the initial parse tree of a query, and handle such issues as
syntax checking; name resolution; access control; data types; and
string collations. During the Prepare phase, the parse tree may
undergo several logical transformations: derived tables may be
merged into their parent query blocks; predicates may be pushed
down from a query block into its descendent tables or derived
tables; subqueries may be converted into semi-joins or derived
tables; join-nests may be flattened; scalar expressions simplified
using rules of transitivity, tautologies, and contradictions; etc.

Figure 2: MySQL query optimizer layers. Diagram adapted
from: http://www.unofficialmysqlguide.com

The next step is Cost-based Optimization which proceeds one
SELECT block at a time, and is limited to determining the best join
order; join method (nested loop or hash join); and table access
method (table scan, index scan, or index lookup and which index).
The optimizer only considers left deep plans, and aggregation is
always done after all of the tables in a block have been joined. In
the integration work described in this paper, this phase’s work is
delegated to Orca, and therefore, is shown shaded in orange in
Fig. 2. The result of the cost-based optimization is a skeleton plan
in which join orders, join methods, and the tree structure have
been finalized.

Although the name may suggest otherwise, Plan Refinement
is an important phase of MySQL query optimization. During
this phase, selection conditions are placed and pushed down
into tables and indexes, where possible. A sort is avoided if an
index scan already delivers rows in the expected sorted order.
Aggregations, group-level filtering, and row limit enforcement
are added at this step too. After this phase, the plan is ready for
execution.

3 INTEGRATION OVERVIEW
The schematic diagram in Fig. 3 illustrates how Orca is integrated
into MySQL. Three components (shown in blue) implement the in-
terface between them: Parse Tree Converter; Metadata Provider;
and Orca Plan Converter. The left and right converters corre-
spond to the Query2DXL an DXL2Plan components mentioned
in [21], although unlike those components, the exchange formats
are not DXL.

512

Figure 3: Overview of MySQL’s integration with Orca. The
middle layer components (in blue) implement the inter-
face between the two.

A query submitted to MySQL arrives at its parser. After the
usual syntactic, semantic, and access control checks—during
which the parser consults MySQL’s data dictionary for required
metadata information—a parse tree is created.

The MySQL Prepare phase then performs a number of stan-
dard rewrite transformations on the parse tree, creating what
is sometimes called an abstract syntax tree (AST). The prepared
AST then proceeds to cost-based optimization either by MySQL’s
query optimizer, or by Orca as described in this paper.

The Parse Tree Converter takes as input a prepared MySQL
parse tree, and converts it to an equivalent Orca logical operator
tree. The converter creates Orca-compatible trees directly, and
does not use Orca’s XML-based DXL format as intermediary.
When resolving types and attributes of various metadata objects
referred to in a parse tree—for example, tables; table columns;
data types; and type attributes—the parse tree converter invokes
the necessary methods of the Metadata Provider. The parse tree
converter is described in more detail in Section 4.1.

The Metadata Provider provides API access to the various
MySQL object types—for example, tables; columns; data types;
statistics; and histograms—to Orca. A DBMS-specific metadata
provider needs to be written to integrate with Orca, and accord-
ingly, we wrote one for MySQL. Unlike the Parse Tree Converter,
the metadata provider’s interface with Orca is in DXL format.
The provider obtains the necessary information about the various
objects from MySQL’s data dictionary, and is described in detail
in Section 5.

Orca query optimization converts an Orca logical plan to an
Orca physical plan. The Orca Plan Converter converts that phys-
ical plan to the corresponding MySQL skeleton plan. As the name
suggests, a skeleton plan has the most important plan elements,
but also omits many details. Only the table join order, join meth-
ods, and table access methods are retained in the skeleton plan,
whereas join predicates, non-join predicates, groupings, order-
ings, projections, and so on are omitted. As already mentioned
in Section 2.2, the MySQL query optimizer has the notion of a
skeleton plan, and knows how to convert it to a physical plan
during the optimizer’s plan refinement phase. Therefore, Orca
integration uses plan skeletons as the intermediary format. Once
again, Orca’s DXL data format is not used during this conversion
either.

Plan refinement, which converts a skeleton plan to an exe-
cutable physical plan, accomplishes four things: predicate place-
ment; aggregation; row ordering; and row limit enforcement.

Predicates are attached to either leaf nodes (tables) as filters, or
to intermediate nodes as join conditions or filters. Aggregations
are performed after all of the tables are joined in a query block.
Row ordering and limit enforcement are determined last.

Finally, the resulting MySQL physical plan is executed by
MySQL’s execution engine to produce the query results.

3.1 Orca Query Optimization Benefits
The TPC-DS query 72 shown in Listing 1 can illustrate the gains
obtained by delegating query optimization to Orca. It is a simple
snowflake query that joins a large fact table (catalog_sales)
with 10 smaller tables, and performs a group-by aggregation. The
essential structures of the plans produced by the MySQL and
Orca optimizers are shown in Fig. 4 and Fig. 5, respectively.

Both optimizers return plans that first join all of the tables,
and do the group-by last. The execution times for the MySQL
and Orca plans are 288 sec and 34 sec, respectively—an 8.5X
improvement.

Listing 1: TPC-DS Query 72
SELECT i _ i t e m _ d e s c , w_warehouse_name , d1 . d_week_seq ,

SUM(CASE WHEN p_promo_sk I S NULL THEN 1 ELSE 0 END)
no_promo ,

SUM(CASE WHEN p_promo_sk I S NOT NULL THEN 1 ELSE 0
END) promo , COUNT (∗) t o t a l _ c n t

FROM c a t a l o g _ s a l e s
JOIN i n v e n t o r y ON (c s _ i t e m _ s k = i n v _ i t e m _ s k)
JOIN warehouse ON (w_warehouse_sk= inv_warehouse_sk)
JOIN i t em ON (i _ i t e m _ s k = c s _ i t e m _ s k)
JOIN cus tomer_demograph ics ON (c s _ b i l l _ c d e m o _ s k =

cd_demo_sk)
JOIN househo ld_demograph ic s ON (c s _ b i l l _ h d e m o _ s k =

hd_demo_sk)
JOIN date_d im d1 ON (c s _ s o l d _ d a t e _ s k = d1 . d _ d a t e _ s k)
JOIN date_d im d2 ON (i n v _ d a t e _ s k = d2 . d _ d a t e _ s k)
JOIN date_d im d3 ON (c s _ s h i p _ d a t e _ s k = d3 . d _ d a t e _ s k)
LEFT OUTER JOIN promot ion ON (cs_promo_sk =p_promo_sk)
LEFT OUTER JOIN c a t a l o g _ r e t u r n s ON

(c r _ i t e m _ s k = c s _ i t e m _ s k AND cr_order_number =
cs_order_number)

WHERE d1 . d_week_seq = d2 . d_week_seq
AND i n v _ q u a n t i t y _ o n _ h a n d < c s _ q u a n t i t y
AND d3 . d _ d a t e > (CAST (d1 . d _ d a t e AS DATE) + INTERVAL

' 5 ' DAY)
AND h d _ b u y _ p o t e n t i a l = ' 501 −1000 '
AND d1 . d_year = 1999 AND c d _ m a r i t a l _ s t a t u s = 'D '

GROUP BY i _ i t e m _ d e s c , w_warehouse_name , d1 . d_week_seq
ORDER BY t o t a l _ c n t DESC , i _ i t e m _ d e s c , w_warehouse_name ,

d1 . d_week_seq
LIMIT 100

Figure 4: Query 72 plan generated by the MySQL opti-
mizer.

The plan selected by the MySQL optimizer first joins ten tables
together using a sequence of nested-loop joins, with the largest
table (catalog_sales) as the driving table. The eleventh table
is then joined in using a hash join. The result is finally sorted
and aggregated using streaming aggregation. Only one of the

513

ten joins is a hash join which is typical: the MySQL optimizer
favors nested loop joins because currently, hash join selection is
not cost-based.

Figure 5: Query 72 plan generated by the Orca optimizer.

Orca selects a bushy plan where six of the ten joins are hash
joins, and only four are nested loop joins. The result is then sorted
and aggregated using streaming aggregation. The execution time
is reduced to 34 sec thanks to better choices of join order and
join methods.

4 QUERY TREE TRANSLATIONS AND PLAN
REFINEMENT

Orca provides three integration points for interfacing with a data-
base system: queries as input; exchange of metadata about those
queries; and execution plans as output. Orca uses an XML-based
data format called DXL for the three information exchanges [21],
and indeed, a DXL object can encode queries, metadata, and ex-
ecution plans. The Orca research reported in [21] contains two
sample DXL documents.

In the MySQL integration work reported here, the metadata
provider communicates with the other components using DXL,
but the two tree converters take a more direct approach by ex-
changing in-memory trees. The descriptions of the two tree con-
versions and the plan refinement phase follow; Section 5 then
explains how the MySQL metadata provider works.

4.1 MySQL to Orca Tree Converter
MySQL to Orca tree converter takes as input a prepared abstract
syntax tree (AST), and outputs an Orca logical operator tree.
Conversion from an AST-like parse tree to an operator tree is a
necessary step in any SQL query optimizer.

MySQL starts with an initial AST; performs name resolution
and access checks; and applies logical rewrites to incrementally
change that AST. The MySQL way is to continue making such
gradual changes by attaching more data structures to the AST
until an execution plan results. Indeed, the boundary between a
logical plan and a physical plan in MySQL is somewhat blurred.

MySQL sometimes decides to rewrite a EXISTS/NOT EXISTS
query to semi/anti-semi join structure depending on column
nullability. In such a case, the translator needs to rearrange pred-
icates to divide them among the two sides of the semi join and
the ON condition of the semi join itself for an interesting reason.
At the place where the converted Orca logical tree joins Orca’s
optimization pipeline, selection pushdown has already happened.
Thus, without such predicate segregation, Orca plans would not
benefit from selection pushdown—a simple yet effective SQL
query optimization technique.

MySQL to Orca tree conversion itself is largely clause-wise,
and the approximate translation order is:

• FROM
• WHERE (1)
• window functions (1)
• WHERE (2)
• SELECT (1)
• GROUP BY
• SELECT (2)
• HAVING
• window functions (2)
• ORDER BY
• SELECT (3)
• LIMIT

In the above list, the conventions ‘SELECT (1)’ and ‘SELECT
(2)’ mean that a part of a SELECT clause (projection) is trans-
lated before GROUP BY, and a part after. ‘SELECT (3)’ refers to
a case when a projection is not based on any table columns, as
in: ‘SELECT 'Canada' as Country .. ’. Similarly, window
functions are processed twice. If a query has no aggregations,
window functions are handled before projection; otherwise, they
are handled after aggregations.

The TPC-H query 4 appearing in Listing 2 can suggest some
of the complexities involved.

Listing 2: TPC-H Query 4
SELECT o _ o r d e r p r i o r i t y , COUNT (∗) AS o r d e r _ c o u n t
FROM o r d e r s
WHERE o _ o r d e r d a t e >= DATE ' 1995 −01 −01 ' AND

o _ o r d e r d a t e < DATE ' 1995 −01 −01 ' + INTERVAL ' 3 ' MONTH
AND EXISTS (SELECT ∗

FROM l i n e i t e m
WHERE l _ o r d e r k e y = o_orderkey AND

l _ commi tda t e < l _ r e c e i p t d a t e)
GROUP BY o _ o r d e r p r i o r i t y
ORDER BY o _ o r d e r p r i o r i t y ;

MySQL to Orca tree converter receives a rewritten AST version
of the query. For easy depiction, we have converted that AST
using a SQL-like syntax in Listing 3. Notice that the subquery
has been converted into a semi-join, and all of the conditions
appear in the WHERE clause.

Listing 3: The AST for TPC-H Query 4 in SQL-like syntax
SELECT o r d e r s . o _ o r d e r p r i o r i t y AS o _ o r d e r p r i o r i t y , count

(0) AS o r d e r _ c o u n t
FROM o r d e r s SEMI JOIN l i n e i t e m
WHERE ((o r d e r s . o _ o r d e r d a t e >= DATE ' 1993 −11 −01 ')

AND (o r d e r s . o _ o r d e r d a t e < (DATE ' 1993 −11 −01 ' +
INTERVAL 3 MONTH))

AND (l i n e i t e m . l _commi tda t e < l i n e i t e m . l _ r e c e i p t d a t e)
AND (o r d e r s . o_orderkey = l i n e i t e m . l _ o r d e r k e y))

GROUP BY o r d e r s . o _ o r d e r p r i o r i t y
ORDER BY o r d e r s . o _ o r d e r p r i o r i t y ;

The converter divides the WHERE clauses among the ‘orders’
table, the ‘lineitem’ table, and the semi-join’s ON condition, and
the resulting Orca logical tree appears in Listing 4. Notice that
predicate pushdown has been accomplished.

Listing 4: The Orca logical tree for TPC-H Query 4 in SQL-
like syntax
SELECT o r d e r s . o _ o r d e r p r i o r i t y AS o _ o r d e r p r i o r i t y , count

(0) AS o r d e r _ c o u n t
FROM

(SELECT ∗ FROM o r d e r s
WHERE (o r d e r s . o _ o r d e r d a t e >= DATE ' 1993 −11 −01 ')

AND (o r d e r s . o _ o r d e r d a t e < (DATE ' 1993 −11 −01 ' +
INTERVAL 3 MONTH)))

SEMI JOIN
(SELECT ∗ FROM l i n e i t e m
WHERE l i n e i t e m . l_commitda te < l i n e i t e m . l _ r e c e i p t d a t e)

ON (o r d e r s . o_orderkey = l i n e i t e m . l _ o r d e r k e y)
GROUP BY o r d e r s . o _ o r d e r p r i o r i t y
ORDER BY o r d e r s . o _ o r d e r p r i o r i t y ;

514

Although Listing 4 does not make it apparent, the projection
of ‘o_orderpriority’ happens before the GROUP BY (the SELECT
(1) case), and the ‘COUNT(*)’ projection happens after it (the
SELECT (2) case).

While determining how to translate a MySQL parse tree to an
Orca logical tree, it was helpful to submit the same query text
to GPDB (Greenplum DBMS), and consult the logical trees that
GPDB submitted to Orca.

During the MySQL to Orca translation, Orca’s logical ‘table-
descriptor’ objects are enhanced by adding to them pointers to the
𝑇𝐴𝐵𝐿𝐸_𝐿𝐼𝑆𝑇 data structure that MySQL maintains to keep track
of the tables in a query. Table descriptor objects are subsequently
carried into Orca’s physical plan operators, and with them the
corresponding 𝑇𝐴𝐵𝐿𝐸_𝐿𝐼𝑆𝑇 pointers get copied too. When the
time comes to translate an Orca physical plan to MySQL (as
explained in Section 4.2), this mapping comes in handy. Without
it, the mapping would have to be reestablished by searching
MySQL parse tree which is not only slow, but also error-prone.

The MySQL to Orca tree converter then consults the MySQL
metadata provider, and embellishes the Orca logical tree nodes
with the necessary OID’s. A typical interaction of the converter is
to send the schema-qualified name of a table, say ‘tpch.lineitem’,
and receive that table’s unique OID. OID’s for such objects as
tables, column types, expressions, functions, and so on are es-
tablished. Later on, when Orca needs to consult the metadata
provider to extract more information—for example, the histograms
of a table’s columns—it uses the table’s pre-established OID.

Currently, the parse tree converter only sends SELECT queries
to Orca for optimization; INSERT, UPDATE, and DELETE statements,
and queries posed on MySQL’s system tables are not sent. Further-
more, only ‘complex’ queries are sent to Orca. Query complexity
is defined to be the total number of table references in a query, and
the resulting ‘complex query threshold’ is set to three. However,
as mentioned in Section 9, we plan to implement a more sophisti-
cated approach in future. Also, we plan to remove the following
two limitations of the converter: (1) only non-recursive common
table expressions (CTEs) are allowed; and (2) GROUPING functions
can only have one column. (Orca does not support GROUPING
functions, but we implemented single-column versions to run
the TPC-DS workload.)

4.2 Orca to MySQL Plan Converter
The Orca optimizer receives an Orca logical tree generated by the
converter described in Section 4.1; accesses the MySQL metadata
via the MySQL metadata provider; and optimizes the logical tree
to create a physical plan. The task of converting that plan to a
MySQL executable plan is accomplished in two steps:

(1) Orca to MySQL plan converter converts an Orca physical
plan to a MySQL skeleton plan.

(2) MySQL plan refinement then converts a skeleton plan to
an executable plan as described in Section 4.3.

A skeleton plan essentially encodes the best join position and
the best join method for each table appearing in a query.1 In our
integration, Orca is used to determine exactly those details, and
hence, skeleton plan is an ideal intermediary. The information in
a skeleton plan also has the most impact on query performance.

Orca to MySQL plan translation is illustrated using the TPC-H
Q17 appearing in Listing 5. The most relevant physical operators
in Orca’s plan for Q17 appear in Fig. 6; the actual plan is much
more complicated. The plan sketch shows that the three leaf
1A ‘table’ in this context can also be a temporary derived table or a CTE.

nodes are ‘part’, ‘lineitem’, and ‘lineitem’ accessed using table
scan, index scan, and index scan, respectively. The numbers after
the physical operator names are the ‘memo’ group ID’s.

Orca to MySQL plan translation is accomplished by traversing
such an Orca physical plan twice; the two passes are described
next. The section ends with a discussion of two special cases.

Listing 5: TPC-H Query 17
SELECT SUM(l _ e x t e n d e d p r i c e) / 7 . 0 AS a v g _ y e a r l y
FROM l i n e i t e m , p a r t
WHERE p _p a r tk e y = l _ p a r t k e y

AND p_brand = ' Brand #14 ' AND p _ c o n t a i n e r = 'SM ␣ PKG '
AND l _ q u a n t i t y < (SELECT 0 . 2 ∗ AVG(l _ q u a n t i t y)

FROM l i n e i t e m
WHERE l _ p a r t k e y = p_ p ar t k ey)

LIMIT 1 ;

Figure 6: The important physical operators in Orca’s TPC-
H Q17 plan.

4.2.1 First pass. Orca to MySQL plan converter first makes
a pre-order traversal of the tree shown in Fig. 6. The first leaf
node encountered is 1, and the path leading up to it (46, 32, 56, 1)
is put in Query Block 1 which may acquire more nodes because
the tree traversal has not yet completed.

The traversal next visits the leaf 17. Each leaf node contains a
𝑇𝐴𝐵𝐿𝐸_𝐿𝐼𝑆𝑇 object (mentioned in Section 4.1) which contains—
among other things—a link to the leaf’s containing query block.
For 17, the query block changes, and therefore, a new query
block (Query Block 2) is initiated containing (17). Furthermore,
the subquery rooted at 17 is converted to a derived table be-
cause the subquery is attached to the containing query via the
‘l_quantity < (subquery)’ predicate, and ‘l_quantity’, be-
longing to the containing query’s ‘lineitem’ table, has not been
seen by the scan yet.

Had the subquery not been converted to a derived table, dur-
ing plan refinement (explained in Section 4.3), when MySQL
optimizer attaches the ‘l_quantity < (subquery)’ predicate,
it would have been attached to the node 77. That, however, is
not what Orca wants: the intention is to compute the subquery
before 77 is joined in.

The traversal next encounters 77 which is determined to be-
long to Query Block 1. At the end of the tree traversal, the two
query blocks 1 and 2 are determined to be (46, 32, 56, 1, 77) and
(17), respectively, and are demarcated using different colors in
Fig. 6.

During the traversal, if the first pass discovers that Orca has
changed the query block structure altogether, Orca optimization
is aborted, and the system resorts to the usual MySQL query
optimization.

515

4.2.2 Second pass. Orca to MySQL plan converter then makes
a second pass through the tree shown in Fig. 6 to fill in MySQL’s
‘best-position’ arrays. Each query block has its own such array,
and the array entries are filled with the leaf nodes as they appear
left-to-right in the pre-order traversal. In addition to the table
name, an array entry also contains the access method chosen, its
cost, and the number of output records.

For the query block 1 in Fig. 6, the best-position array con-
tains [part, derived_1_2, lineitem], whereas for query block 2, it
(trivially) contains [lineitem]. The name ‘derived_1_2’ is that of
a temporary table that is materialized once for each outer row.
During this second pass, the𝑇𝐴𝐵𝐿𝐸_𝐿𝐼𝑆𝑇 pointers mentioned in
Section 4.1 are utilized. The two best-position arrays for the TPC-
H query 17 are depicted in Fig. 7 using the same color scheme as
in Fig. 6.

Figure 7: The two MySQL ‘best-position’ arrays and their
relationship for TPC-H Query 17.

Cost and cardinality estimations are important for users to
understand why a certain plan is chosen. During the second pass,
those values from an Orca plan are copied over to MySQL side.
When MySQL optimizer produces the physical plan during plan
refinement (explained further in Section 4.3), the cost and row
estimations are copied to the iterators, and show up in the MySQL
plan (the EXPLAIN output) as usual.

4.2.3 Special cases. Together, the two passes accomplished
Orca to MySQL plan conversion, but two complexities were omit-
ted for simplicity’s sake. They are briefly described in this section.

The first involves handling of common table expressions (CTE’s).
Orca has the ‘one-producer-plan multiple-consumers’ model
for CTEs [7], whereas MySQL has the ‘multiple-producer-plans
multiple-consumers’ model (although only one producer plan
executes). Orca’s single producer is mapped to MySQL’s multiple
consumers during the first pass.

Specifically, in case of Orca, a CTE sub-tree is a single instance
which the multiple consumers point to without ambiguity. During
MySQL compilation, multiple identical CTE sub-tree instances
exist, and although only one of them is chosen for execution, the
choice is not known at plan translation time. Accordingly, Orca’s
single CTE instance is translated to 𝑛 MySQL copies—one for
each consumer—so that any one of the copies can execute.

The second is about subqueries and derived tables. During
the tree translation, subqueries are preferred because transla-
tion to derived tables involves structural changes to the parse
tree. (MySQL can translate subqueries to derived tables, but that
functionality is off by default.) There are cases when Orca to
MySQL converter must convert a subquery to a derived table. For
example, Orca might produce a non-correlated execution plan
for a correlated subquery, requiring the derived table approach.
There are also cases when the converter overrides Orca’s derived
table conversion. For example, TPC-DS Q9’s CASE structure is
illustrated in Listing 6. The successive CASE clauses are formed
using consecutive bucket boundaries: [1, 20], [21, 40], and so
on. The corresponding WHEN, THEN, and ELSE queries are similar

otherwise. In such a case, the derived table approach requires re-
dundant expression evaluations, whereas the subquery approach
only evaluates one of the CASE clauses specific to a bucket.

Listing 6: TPC-H Query 9’s CASE structure
SELECT

−− [1 , 2 0] b u c k e t
CASE WHEN (SELECT . . FROM . . WHERE . .)

THEN (SELECT . . FROM . . WHERE . .)
ELSE (SELECT . . FROM . . WHERE . .)

−− [2 1 , 4 0] b u c k e t
CASE WHEN (SELECT . . FROM . . WHERE . .)

THEN (SELECT . . FROM . . WHERE . .)
ELSE (SELECT . . FROM . . WHERE . .)

. . .

4.3 MySQL Plan Refinement
The Orca optimization has determined the best join orders and
join methods, and the Orca to MySQL plan converter has trans-
lated those choices to a MySQL skeleton plan. MySQL plan
refinement—which is oblivious of this Orca detour—begins by
handling of the scalar expressions, represented in a MySQL parse
tree as ‘Item’ objects. Those ‘Item’ objects are attached to the
appropriate tables or intermediate nodes.

Plan refinement then handles aggregations and window func-
tions, and chooses between stream and hash aggregates. Tuple
orderings and row limits are also addressed. If join orders and
access methods do not yield desired sorted orders, the necessary
sorts are inserted.

In the integration work, MySQL’s plan refinement code was
essentially unchanged. The only change was to always yield
to Orca’s hash-join decisions. (In some cases, plan refinement
overrides some hash-join decisions made during the previous
greedy join-order search, and that overriding was disabled.)

In principle, tighter integration with Orca may enable MySQL
to delegate handling of aggregation, windows functions, sorts,
and limits too; and we plan to investigate that in future.

For TPC-H Q17, the resulting MySQL physical plan is repro-
duced in Listing 7 using MySQL’s EXPLAIN format (slightly
edited for brevity).

Listing 7: TPC-H Query 17’s Orca-assisted MySQL query
execution plan
EXPLAIN (ORCA)
−> Limit : 1 row (s)

−> Aggregate : sum (l i n e i t e m . l _ e x t e n d e d p r i c e)
−> Nested loop inner jo in (c o s t = 1 5 4 8 . 9 0 rows

= 2 0 9 6 8 3)
−> Nested loop inner join (cost=1292.27 rows=7045)

−> Invalidate m a t e r i a l i z e d t a b l e s (row from p a r t)
(c o s t = 1 0 5 1 . 5 3 rows = 7 0 4 4)

−> F i l t e r : ((p a r t . p _ c o n t a i n e r = 'SM ␣ PKG ') and
(p a r t . p_brand = ' Brand #14 ')) (c o s t

= 1 0 5 1 . 5 3 rows = 7 0 4 4)
−> Table scan on p a r t (c o s t = 1 0 5 1 . 5 3 rows

= 3 9 6 1 7 5 7)
−> Table scan on d e r i v e d _ 1 _ 2 (c o s t = 0 . 0 3 rows =1)

−> M a t e r i a l i z e (invalidate on row from p a r t)
−> Aggregate : avg (l i n e i t e m . l _ q u a n t i t y)

−> Index lookup on l i n e i t e m using
l i n e i t e m _ f k 2 (l _ p a r t k e y = p a r t .
p _p a r tk e y) (c o s t = 0 . 0 3 rows =30)

−> F i l t e r : (l i n e i t e m . l _ q u a n t i t y < d e r i v e d _ 1 _ 2 .
Name_exp_1) (c o s t = 0 . 0 4 rows =1)

−> Index lookup on l i n e i t e m using l i n e i t e m _ f k 2
(l _ p a r t k e y = p a r t . p _p a r t k e y) (c o s t = 0 . 0 4 rows
=30)

Several things are worth noticing in the EXPLAIN output. First,
the first line indicates that the plan was Orca-assisted. Second, the
estimated execution costs and cardinalities are coming from Orca.
Third, the left outer nested loop join of Fig. 6 has been replaced

516

with an inner nested loop join (typeset in blue) because the predi-
cate ‘lineitem.l_quantity < derived_1_2.Name_exp_1’ im-
plies that ‘derived_1_2.Name_exp_1’ is not NULL. Fourth, the
best-position array shown in Fig. 7 contains the materialized
table as one of the leaves, and its name, ‘derived_1_2’ matches
with the table scan operator’s target. Fifth, because correlation is
involved, each ‘part’ row from the outer side causes a separate
materialization of the ‘derived_1_2’ table, and that fact is indi-
cated using the two matching ‘invalidate’ annotations (typeset
in red) on the outer and inner sides of the bolded nested loop
join. (In EXPLAIN outputs, an outer table precedes an inner table
underneath a join.)

5 Orca METADATA PROVIDER FOR MySQL
Orca’s integration with a target DBMS uses the plug-in approach
of a DBMS-specific metadata provider, and this section describes
the MySQL metadata provider. It differs from a similar provider
for PostgreSQL in one important aspect. When integrating with
PostgreSQL, Orca handles both metadata objects and, in some
cases, function pointers. Therefore, PostgreSQL metadata provider
needs to return function pointers for expression evaluation, type
casts, and so on—something that the MySQL metadata provider
avoids because a query executes inside MySQL. This difference
simplifies the MySQL metadata provider, but it still has to fulfil
all of the Orca API contracts—even if sometimes by providing
stubs.

In PostgreSQL—Orca’s original target DBMS—all types of ob-
jects (tables, columns, types, expressions, histograms, etc.) are
identified by ID’s. Accordingly, the communication between Orca
and the MySQL metadata provider is heavily object ID-based, and
uses the DXL format [21]: the object ID’s eventually get inserted
into DXL instances. How the metadata provider computes the
ID’s for the various types of objects such as types; expressions
(and their rewritten forms); and functions is described next.

5.1 Types and Type Categories
MySQL has 31 types—for example, various types of integers; var-
ious types or reals; various types of dates and datetimes; JSON;
geometry; and so on. Conceptually, they can be combined arbi-
trarily to form various arithmetic, comparison, and aggregation
expressions. Not all of the combinations are valid of course, but
given MySQL’s rich type promotions, many of them are.

The MySQL metadata provider needs to provide metadata ID’s
for data types and expressions composed from types. To man-
age complexity, types are composed into type categories. The 31
types are divided into 12 type categories. For example, DECIMAL,
FLOAT, DOUBLE, and NEWDECIMAL are put into the “NUM”
(numeric) type category; four types of BLOB’s are put into the
consolidated “BLB” type category; and so on. Doing so drastically
reduces the number of expression combinations. Less obviously,
it avoids handling of MySQL’s rich type promotions mentioned
earlier.

For each data type, the metadata provider provides the fol-
lowing information to Orca: name; length; whether it is pass-by-
value; whether it is text-related; its type modifier (lengths for
CHAR, VARCHAR, and other variable-length types); and so on.

5.2 Expressions
Orca expressions are of three types: arithmetic, comparison, and
aggregation.

Figure 8: Arithmetic expressions enumerated.

Arithmetic expressions are formed using the usual five oper-
ators {+,−, ∗, /,%}. The left and right operands are the 12 type
categories mentioned in Section 5.1. The total number of arith-
metic expressions is therefore 12 × 12 × 5 = 720. As illustrated in
Fig. 8, they can be thought of as the integral vertices contained
within a 3-dimensional cube whose 𝑋 , 𝑌 , and 𝑍 axes index the
left type category, the right type category, and the arithmetic
operator, respectively. The metadata provider creates a unique
linear order for the 720 indexable points, and provides functions
that can translate an (𝑖, 𝑗, 𝑘) index tuple to a point in that linear
order, and vice versa.

Comparison expressions are handled identically except that
there are 6 comparison operators {<, ≤, >, ≥,=, <>}, and there-
fore, the cube shape is 12 × 12 × 6.

Aggregation expressions are also handled similarly, but two
details vary. First, the standard six SQL aggregation operations
COUNT, MIN, MAX, SUM, AVG, and STDDEV are unary, and therefore,
the cube shown in Fig. 8 is two-dimensional. Second, SQL has two
flavors of COUNT: COUNT(*) and COUNT(column/expression),
with slightly different semantics. The latter is handled similarly
for all of the data types. To handle those two cases, two special
type categories called ‘STAR’ and ‘ANY’ were created—only for
aggregations—for a total of 14 type categories. Thus, the shape
of the two-dimensional array is 14 × 6.

5.3 Commutator and Inverse Expressions
SQL query optimizers may benefit from expression rewrites be-
cause rewritten expressions may be further simplified, or may
find index access paths more easily. Orca is able to commute and
inverse expressions as follows.

For arithmetic expressions, commutation means that (𝑎 + 𝑏)
and (𝑎 ∗ 𝑏) may be rewritten to (𝑏 + 𝑎) and (𝑏 ∗ 𝑎), respectively.
The operators ‘−’, ‘/’, and ‘%’ do not commute. For comparison
expressions, (𝑎 ≤ 𝑏) and (10 > 𝑐) may be rewritten to (𝑏 ≥ 𝑎)
and (𝑐 < 10), respectively.

The generic expression enumeration scheme described in Sec-
tion 5.2 can commute and inverse expressions seamlessly as
described below. Given an OID 𝑘 of an expression, the OID of its
commutator expression is computed as follows.

(1) From 𝑘 , the expression type can be determined because
various types of expressions are laid out in the OID space
in specific slots as will be explained in Section 5.6. For
concreteness, and without loss of generality, suppose that
𝑘 corresponds to a comparison expression.

(2) 𝑘 is converted to its 0-based enumeration ID, 𝑒𝑛𝑢𝑚𝑘 . Be-
cause 864 comparison expressions exist, 𝑒𝑛𝑢𝑚𝑘 ∈ [0, 863].

(3) From 𝑒𝑛𝑢𝑚𝑘 , the type-category-based expression is deter-
mined, say 𝐼𝑁𝑇 8 > 𝑁𝑈𝑀 .

(4) Metadata provider rewrites it to 𝑁𝑈𝑀 < 𝐼𝑁𝑇 8.
(5) The provider computes the enumeration ID for 𝑁𝑈𝑀 <

𝐼𝑁𝑇 8; converts that ID to an OID; and returns the OID to
Orca.

Inverse expressions exist only for comparison expressions, and
enable query rewrites by introducing or eliminating SQL’s NOT

517

operator. For example, the inverse of (𝑎 < 𝑏) is (𝑎 ≥ 𝑏). The six
comparison operators {=, <>, <, ≤, >, ≥} have the inverses {<>
,=, ≥, >, ≤, <}, respectively. The metadata provider computes the
inverses similarly to the way it handles commutators.

For expressions without commutators or inverses, a special
invalid OID is returned, informing Orca that certain rewrites for
those expressions are not possible.

5.4 Functions
The Orca optimizer considers two major types of functions:
mapped functions and regular functions. Each mapped function
corresponds to an expression (arithmetic, comparison, and aggre-
gate) mentioned in Section 5.2. When Orca acts as PostgreSQL’s
query optimizer, such mapped functions provide executable code
to evaluate the expressions. Regular functions are the ones that
SQL provides: EXTRACT, SUBSTRING, CAST, ROUND, UPPER, CONCAT,
ABS, and so on.

In the Orca integration described in this paper, function exe-
cution (and SQL physical operator execution) happens inside the
Taurus MySQL query executor, but still, to fulfil the Orca API,
the MySQL metadata provider generates the metadata IDs for
both mapped and regular functions.

5.5 Relations, Statistics, and Histograms
For each relation, MySQL metadata provider provides such infor-
mation as its name; columns; column types; cardinality; number
of null values (column-wise); number of distinct values (column-
wise); column histograms, indexes, and so on.

Histogram translation was straightforward because both of
the histogram types in Orca—singleton and equi-height—are sup-
ported in MySQL, and histograms themselves contain similar
information. For columns with UNIQUE constraints, MySQL does
not maintain histograms, and that restriction was lifted so that
such histograms could be fed to Orca.

For histograms on string data types, the two optimizers differ.
Orca only supports singleton histograms, whereas MySQL can
produce equi-height histograms too. To convert MySQL string
histograms to Orca, We had two choices: (1) only convert sin-
gleton histograms; and (2) modify Orca to support equi-height
histograms. We chose the latter approach; more details on our
solution appear in Section 7.

5.6 Metadata OID Layout
As mentioned in the preceding sub-sections, MySQL metadata
provider needs to provide OID-based access to various types of
SQL objects: from types and expressions to relations and his-
tograms. The metadata provider uses an internal object layout
scheme such that the OID space is used judiciously and unam-
biguously.

A high-level overview of the layout of the various types of
objects is suggested in Fig. 9. (Only a subset of the object types
are shown although the scheme applies to all of them.) The OID’s
for the 720 arithmetic expressions, for example, are assigned by
first generating their enumeration (the range [0, 719]), and then
by adding those to a ‘base’ value suggested by the 𝑎𝑟𝑖𝑡ℎ_𝑏𝑎𝑠𝑒
pointer in Fig. 9. This ‘base + enumeration ID’ scheme is used
for all of the object types.

At the bottom of Fig. 9, OID’s for relations and their associated
objects are suggested. Such objects are distinguished from the ob-
jects above them in that their counts are not known in advance.
For relations, columns, and so on, MySQL generates internal

Figure 9: Layout of the various metadata OID’s.

object ID’s that are added to a different ‘base’ value (indicated
as 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛_𝑏𝑎𝑠𝑒 in Fig. 9) to compute their corresponding Orca
OID’s. Such relational objects are placed sufficiently apart from
the first group of objects so that collisions are avoided. In sum-
mary, such a layout scheme ensures that the various OID’s are
laid out consecutively when appropriate, and with the necessary
large gaps in between when not.

5.7 Sample Interaction for TPC-H Q17
For the TPC-H Q17 appearing in Section 4.2, MySQL metadata
provider’s first interaction is with the MySQL to Orca tree con-
verter shown in Fig. 3, and explained in Section 4.1. For example,
OID’s for ‘lineitem’ and ‘part’ and their indexes are returned to
the converter.

Once an OID-embellished Orca logical tree is ready, the meta-
data provider’s remaining interactions are with the Orca opti-
mizer itself. For example, Orca requests and obtains statistical
information about the ‘part’ and ‘lineitem’ tables—including col-
umn histograms. Orca maintains an internal metadata cache—not
explicitly shown in Fig. 3—and if the required information preex-
ists there, the metadata provider is not queried again. Expression
OID’s are also sent as requested. For example, for “p_container =
'SM_PKG'”, the OID for STR_EQ_STR is returned. For STR_EQ_STR,
the commutator and inverse expressions exists, and their OID’s
are returned too.

6 EXPERIMENTAL EVALUATION
So far we have shown how Orca can be integrated into MySQL,
but the key question is whether this results in better plans. To
answer this question, we did performance comparisons between
the plans produced by Orca with those by the MySQL optimizer
for TPC-H and TPC-DS queries.

The experiments were run on a small Taurus test cluster with
four Page Store nodes. Each node was running on Intel® Xeon®
Gold 6161 CPU @ 2.20 GHz with 44 cores and 250 GB memory,
and had a Huawei Hi1822 network card rated at 25 Gbps. The
SQL node had 360 GB of memory, but was otherwise identical to
the Page Store nodes.

6.1 TPC-HWorkload
TPC-H is a well-known decision support benchmark with 22
queries [23]. We created a database at the scale factor 20 (20 GB),
and ran the 22 queries sequentially from Q1 to Q22 with ‘complex
query threshold’ (mentioned at the end of Section 4.1) set to its

518

default value of 3. Orca’s join-order search algorithm was set to
EXHAUSTIVE2—its most thorough setting. The run times with
MySQL plans and with Orca plans are plotted in Fig. 10.

Figure 10: Execution time for the TPC-H queries

Although the total run time for the 22 queries reduces by
a modest 16%, the reduction is much higher for some queries.
Queries 21 and 13 show the largest improvements.

Query 21 run time decreased from 115 sec to 45 sec, a 2.6X
improvement. The query joins four tables, and has two subqueries.
The Orca plan has a different join order—the table that occurs first
in the MySQL plan is last in the Orca plan. The two subqueries
are applied last in both plans but in different order.

Query 13 run time decreased from 108 sec to 53 sec, a 2X
improvement. The query consists of a left outer join followed by
two rounds of GROUP BY. The only plan difference is the choice
of the join method for the left outer join: MySQL uses a left outer
nested loop join, whereas Orca uses a left outer hash join.

However, for query 16 appearing in Listing 8, the Orca plan is
2X slower then the MySQL plan (12.6 sec versus 6.5 sec).

Listing 8: TPC-H Query 16
SELECT p_brand , p_type , p _ s i z e ,

COUNT(d i s t i n c t ps_suppkey) AS s u p p l i e r _ c n t
FROM par t supp , p a r t
WHERE p _p a r tk e y = p s _ p a r t k e y AND

p_brand <> ' Brand #34 ' AND
p_type NOT LIKE 'LARGE ␣ BRUSHED% ' AND
p _ s i z e IN (4 8 , 1 9 , 1 2 , 4 , 4 1 , 7 , 2 1 , 3 9) AND
ps_suppkey NOT IN (

SELECT s_suppkey FROM s u p p l i e r
WHERE s_comment LIKE '%Customer%Compla in t s% ')

GROUP BY p_brand , p_type , p _ s i z e
ORDER BY s u p p l i e r _ c n t DESC , p_brand , p_type , p _ s i z e ;

In both plans, the subquery is placed on the inner sides of
nested loop joins. The MySQL plan scans the ‘supplier’ table; ap-
plies the LIKE filter; materializes a temporary table; de-duplicates
the rows; and creates an index on ‘s_suppkey’ on-the-fly. Only
106 rows survive the LIKE predicate, and this strategy proves
effective, especially because the initial table scan benefits from
sequential prefetch. Notice that, in general, table materialization
on the inner side of a nested loop join is risky because the actual
cardinality could be much larger than the estimated.

Orca, on the other hand, does not seem to create indexes on-
the-fly on the inner side, and takes a more conservative approach
by accessing the inner side using a primary key index lookup.
Eventually, that choice results in a slower plan.

Out of curiosity, we forced Orca to scan the ‘supplier’ table
on the inner side, and the driving join changed to a hash join.
Because of the hash join though, a sort was not pushed in to the

outer side, and the resulting plan ran in about 8 sec—much faster
than before, but still a bit slower than the MySQL plan.

Incidentally, the LIKE predicate in query 16 contains a regular
expression, and in such a case, a cardinality estimator based
purely on histograms may find it difficult to estimate row counts
anyway. In summary, MySQL takes a somewhat riskier approach,
but it works out.

6.2 TPC-DS Workload
TPC-DS [22] is a more modern decision support benchmark with
99 queries that are considerably more varied and complex than
those in the TPC-H benchmark. The scale factor was 100 (100
GB), and the ‘complex query threshold’ was set to 2. Orca’s join-
order search algorithm was set to EXHAUSTIVE2. We were able
to execute all of the queries, but to do so we had to rewrite
queries with INTERSECT, INTERSECT ALL, EXCEPT, and EXCEPT
ALL because MySQL does not support those four set operators.

Fig. 11 compares the total query run times—including opti-
mization time—of plans selected by the MySQL optimizer and
plans selected by Orca. Note the different scales on the two Y-
axes.2 Orca produces better plans for two-thirds of the 99 queries,
and the total run time for the 99 queries was reduced by 62%.
For the following 10 queries the Orca plan is at least 10X faster:
{1, 6, 17, 24, 31, 32, 41, 58, 81, 92}. Among those, three obtain at
least 100X speedups: {Q1: 198X, Q6: 123X, Q41: 222X}.

Q1 and Q6 benefit from Orca’s choice of hash joins in selected
places in the plans instead of MySQL’s preference for nested loop
joins.

The reason behind Q41’s improved performance is instructive.
Q41 contains two occurrences of the same ‘item’ table, one in
the outer FROM clause, and the other in a subquery embedded
within the WHERE clause. The inner query in the WHERE clause has
a complex nest of predicates of the form:
((i t em . i _ m a n u f a c t = i 1 . i _ m a n u f a c t) AND x) OR
((i t em . i _ m a n u f a c t = i 1 . i _ m a n u f a c t) AND y)

in which 𝑥 and 𝑦 themselves are multi-clause composite pred-
icates combined using AND’s and OR’s.

Orca is able to factor out the self-join condition, and rewrite
the expression to:
(i t em . i _ m a n u f a c t = i 1 . i _ m a n u f a c t) AND (x OR y)

whereas MySQL is unable to do so. The two plans are identical
otherwise.

In the original form adopted by MySQL, the ‘false’ rows need to
be processed twice—once on each side of the OR clause—whereas
in Orca, the ‘false’ row bailouts need to be determined only once.
The ‘item’ table has 28000 rows, but only 999 distinct ‘i_manufact’
values, and hence the rewrite is so effective.

Overall, Orca plans tend to be slower than MySQL plans only
on short queries; on longer queries Orca plans are almost always
faster. This trend is clearly visible in Fig. 12. The X-axis shows
query run time using the MySQL plan; the Y-axis shows the Orca
plan’s run time divided by the MySQL plan’s run time. For ex-
ample, the point just below 6 on the Y-axis represents query 56
which ran in 0.66 sec using the MySQL plan, and 5.6 times slower
(3.7 sec) with the Orca plan. The slowness can be attributed to two
factors. First, an Orca-routed query undergoes a complete Orca
optimization, and a partial MySQL query optimization; and for
short-duration queries, that overhead plays a role. Second, short-
duration queries also tend to be simple, and for them, MySQL is
2During the MySQL run, Query 1 was cancelled after 600 sec (10 min); queries 4
and 78 took 505 and 331 sec, respectively.

519

Figure 11: Execution time for the TPC-DS queries.

Figure 12: Orca is slower only on short queries.

known to produce reasonably fast plans already. There could be
other reasons too, and we continue to investigate to find the root
causes. In summary, Orca clearly outperforms the MySQL opti-
mizer on longer queries but sometimes loses out to the MySQL
optimizer on short queries.

6.3 Orca Compilation Overhead
In this last experiment, we measure the additional compilation
overhead caused by Orca integration. The times to produce the
EXPLAIN outputs for the TPC-H and TPC-DS queries are mea-
sured with and without Orca’s presence, and the ‘complex query
threshold’ is set to 1, so that all of the queries take the Orca de-
tours. Furthermore, Orca is invoked with two possible dynamic
programming-based search strategies for join enumeration: EX-
HAUSTIVE and EXHAUSTIVE2 (the most thorough setting). Ta-
ble 1 captures the total elapsed (wall-clock) times to compile the

entire TPC-H and TPC-DS query suites. Several observations
can be made based on the numbers reported in Table 1, and the
underlying data.

(1) Orca compilations are significantly slower than MySQL
compilations.

(2) For the relatively simple TPC-H queries, EXHAUSTIVE2
does not add additional search overhead, and in fact, is a bit faster
than EXHAUSTIVE.

(3) For complex TPC-DS queries, EXHAUSTIVE2 adds a no-
ticeable overhead of 26.1 sec over EXHAUSTIVE. Digging deeper
though, the overhead is almost entirely attributable to only two
queries, Q14 and Q64, that require 30.0 sec and 2.1 sec, respec-
tively, of additional compilation time under EXHAUSTIVE2.3
Query 64 contains a CTE with an 18-way join, and the CTE is
joined with itself. Query 14 also contains many CTE expressions
with multi-way joins, and the query is more than 200 lines long.
It is unsurprising that full optimization of such complex queries
takes time.

(4) Overall, Orca compilation overhead is worth the trade-off
because as mentioned in sections 6.1 and 6.2, TPC-H and TPC-DS
benchmarks run 16% and 62% faster, respectively, when executed
using Orca-generated plans.

7 LESSONS LEARNED
The fact that we managed to integrate Orca into MySQL query
optimizer and obtained better plans for complex queries demon-
strates that the approach is feasible and worthwhile. The MySQL
optimizer was never designed with complex queries in mind, and
continuing to extend it is becoming increasingly difficult [18].

3EXHAUSTIVE2 is slightly faster than EXHAUSTIVE for many other queries, which
lowers the total difference to 26.1 sec.

520

Table 1: Orca query compilation overhead

Compiler Total EXPLAIN time (sec)
TPC-H TPC-DS

MySQL 0.17 1.09
MySQL + Orca—EXHAUSTIVE 2.06 48.08
MySQL + Orca—EXHAUSTIVE2 1.85 74.21

To the best of our knowledge, Orca is currently the only opti-
mizer that was designed to be reused in multiple systems, and
has well-defined integration points. As always, there is scope for
improvement, and in the following, some of the lessons learned
are described.

In the metadata provider, assigning types to type categories
proved fruitful. It drastically reduced the number of expression
types, and allowed us to fine-tune type categories based on need.
For example, in an earlier version of the metadata provider, the fol-
lowing MySQL types were all assigned to the INT type-category:
TINY, SHORT, LONG, LONGLONG, INT24, YEAR, ENUM, and SET. Query
performance experimentation, however, revealed that Orca could
not determine proper indexes for integer-like columns based on
the coarse INT type-category. Therefore, INT was replaced with
three more refined type-categories: INT2, INT4, and INT8.

Orca only supports singleton string histograms because it uses
a hash function to convert a string to an integer. The hash func-
tion is not order-preserving, and so it cannot be used for range
predicates, but can be used for equalities and non-equalities, and
can handle arbitrary-length strings. MySQL supports both sin-
gleton and equi-height string histograms, and bucket boundaries
are strings themselves. Because of the more general approach,
all of the comparison operators are supported.

We added equi-height string histogram support to Orca by
converting string bucket boundaries to 64-bit signed integers,
and providing a comparison function for them. The function
preserves string order, but because of the fixed length, it cannot
distinguish between two strings with a long common prefix. A
long-term solution might be call MySQL functions for string
comparisons using Orca’s proxy mechanism.

A somewhat related topic is that of expression evaluation.
Orca treats types other than a handful—for example, various
types of integers, OID’s, Boolean, and so on—to be generic. Ex-
pression evaluation on generics is left to particular DBMS’s—to
be provided using callbacks, for example. A richer set of non-
generic types would permit more effective query optimization
out-of-the-box.

In the Orca implementation that we experimented with [9],
a multi-process query optimization model is assumed. Indeed,
Orca can compile multiple queries in parallel for PostgreSQL be-
cause that DBMS is also multi-process (a process per connection).
MySQL is multi-threaded (a thread per connection), and there-
fore, we could not optimize multiple MySQL queries concurrently
using Orca.

Some challenges were posed because MySQL was the target
system. Although some of them were mentioned earlier in the
paper, they are collected here—in no particular order—for the
benefit of others.

(1) MySQL does not generate bushy plans, and to be able to
execute Orca-optimized bushy plans, additional MySQL ‘glue’
code needed to be written, although MySQL iterators themselves
could be put anywhere in the plan trees. Specifically, because

MySQL assumes left-deep plan trees, its best-position array was
slightly extended to handle bushy trees.

(2) MySQL does not support INTERSECT, INTERSECT ALL,
EXCEPT, and EXCEPT ALL operators, and TPC-DS queries having
those constructs needed to be rewritten using alternate forms.

(3) Orca can push predicates into common table expressions [7].
For example, if two occurrences of the same CTE have predicates
“a = 5” and “a = 6”, the two predicates can be OR-ed. That func-
tionality had to be added to MySQL.

(4) Orca can refactor predicates with OR. For example, it can
rewrite “(a = b AND c = d) OR (a = b AND e = f)” to “(a = b) AND
(c = d OR e = f)”, and use a hash join with the rewritten predi-
cate (for example). MySQL performs such refactorization only
in cases when indexes can be utilized to evaluate “(a = b)”, but
the rewritten form is desirable, in general. In addition to hash
joins, such queries as TPC-DS Q41 mentioned in Section 6.2 also
benefit. Accordingly, the scope of the factorization in MySQL
was broadened.

(5) MySQL does not collect column histograms for UNIQUE
columns. That restriction was removed so that such histograms
could be provided to Orca.

(6) Orca can push a HAVING predicate below GROUP BY if
the predicate’s columns are a subset of the GROUP BY columns.
MySQL can do that for derived tables, but not when subqueries
undergo ‘IN-to-EXISTS’ transformations. Accordingly, that capa-
bility was added to MySQL.

Finally, there were many changes to the Orca optimizer to
improve query performance, or to ensure plan appropriateness.

(1) Orca permits one to add additional transformation rules,
and one such rule that swapped an inner join with an inner cor-
related apply was added. That rule is effective when the pushed-
down inner join reduces cardinality so that the pushed-up apply
has to process fewer rows. For completeness, 11 similar rules
were added for the various types of apply and join combina-
tions, although TPC-H queries 20 and 21—whose performance
improvements were being targeted—only required 4 of them.

(2) We discovered that MySQL treats the build and probe sides
of an inner hash join differently. Everywhere else, the widely-
known convention “build-side on the right, and probe-side on
the left” is used, but for inner hash joins, the reverse is true. The
flip was introduced in the Orca-generated trees for the MySQL
target.

(3) We discovered that Orca was using the rebind values in-
correctly. The rebind count is simply the number of rows coming
from the outer side, and after the operator swapping mentioned
in Item 1, outdated rebind values were still in use.

(4) Orca uses an index scan only when there is a predicate
that requires it, but an index scan can also supply a required row
order. That enhancement to Orca was added.

(5) Orca can push GROUP BY below join, but because MySQL
query execution cannot execute such plans, that rewrite rule
was disabled in Orca. For the same reason, an Orca rule that
transforms a left semi-join to inner join below a GROUP BY was
disabled.

(6) Orca can generate semi-hash-join plans whose build sides
contain more than one table. Because MySQL cannot execute
such plans, that type of plan generation was disabled.

(7) This work demonstrates that Orca plans—designed for
MPP systems—can be made to work on single-node system too.
Orca plans (and MPP plans in general) handle data replication

521

and distribution, but those aspects are not relevant on single-
node systems such as MySQL where correlations among inner
and outer blocks are one of the predominant features of complex
analytical queries. Orca was provided the necessary nudges to
guide it towards MySQL-relevant plans. For example, some plans
are marked as “‘replicated distribution required’ and ‘replication
prohibited’"—an invalid combination on MPP systems because
replication is required to produce replicated distribution, but
perfectly valid on single-node systems. Accordingly, we let Orca
produce such plans to not miss out on any good choices.

8 RELATEDWORK
A good query optimizer is necessary for efficient and speedy
query execution. The relative importance of the various aspects
of query optimization, namely, join order selection, cardinality
estimation, bushy trees, cost models, heuristics, and so on are
somewhat folklore knowledge. A recent work reported in [15]
attempts to assign relative importance to such factors. For exam-
ple, it claims that join order matters more than bushy trees. The
Orca evaluation presented in this paper attempted to get the best
plans out of Orca; provided the histograms as they existed inside
MySQL; and in case of string histograms, extended Orca to use a
custom string comparison function. We did also extend MySQL
to execute bushy plans.

System R [19] can be considered the original query optimiza-
tion framework in that it had a large influence on later optimiz-
ers. Subsequently, several query optimization frameworks have
been proposed: Volcano [10], Cascades [11], Starburst [17], and
OPT++ [13]. Orca—whose code we downloaded from its open-
source repository [9]—is based on Cascades. Many commercial
and open-source query optimizers are based on the ideas from
Volcano and Cascades: SQL Server, SCOPE [5], PDW [20], and
Greenplum [12].

Reusing an existing query optimizer to do something slightly
different has been explored in the past. In particular, by using
‘shell’ databases, optimizers were utilized to optimize a more gen-
eral class of queries, and in query tuning. The approach works
as follows. A ‘shell’ of a database is derived from an existing
database by only copying from it the metadata and statistics.
Because query optimization does not need actual data, it can
work on the shell rather than the original one. Such an approach
avoids metadata provider altogether. At least two use cases of
such shell databases exist. First, SQL Server’s Parallel Data Ware-
house (PDW) [20] generates plans for a distributed query by first
generating a collection of non-distributed plans based on a shell
database; then adding data distribution operations to those plans;
and finally selecting the lowest-cost distributed plan. Second,
SQL Server’s Database Tuning Advisor [1] tunes queries by gen-
erating a shell database from a production database, and then by
asking ‘what-if’ questions to that shell database in order to avoid
tuning overhead on a production server.

9 CONCLUSIONS AND FUTUREWORK
Traditional query optimizers are monolithic, and difficult to ex-
tend. In this project, we explored whether and how query opti-
mization can be delegated to Orca: an open-source query opti-
mizer that permits integration with other products. Using Taurus
MySQL, we demonstrated the feasibility of this approach, and its
performance benefits. In particular, by writing a MySQL meta-
data provider as a plug-in to Orca, information about MySQL
objects pertinent for query optimization (tables, columns, types,

cardinalities, histograms, and so on) was made available to Orca.
Two additional components were written that translated MySQL
prepared parse trees to Orca logical operator trees, and Orca
physical plans to MySQL skeleton plans. Performance benefits
were observed using two classical decision support benchmarks:
TPC-H and TPC-DS.

We took a conservative approach, in essence, delegating only
join optimization and access method selection to Orca, being
careful to not change the query block structure, and returning
Orca plans in the form of skeleton plans already used by MySQL.
The Orca optimizer was invoked during MySQL optimizer’s ‘pre-
pare’ phase, but that is not the only possibility. Two alternatives
are suggested below; we plan to explore them in future.

First, Orca can be invoked after MySQL’s cost-based optimiza-
tion has been performed, but only if the estimated cost of the
MySQL plan is above some threshold. MySQL’s greedy join order
determination is relatively fast, so this would not add signifi-
cantly to the query run time. Such an approach would almost
certainly be better than our three-table heuristic for deciding
which queries to send to Orca.

Second, Orca can be invoked much earlier—say immediately
after MySQL’s syntactic, semantics, and access-control checks. If
so, Orca gets full freedom to do tree transformations, expression
rewrites, and so on. This approach has several complexities.

• Any expression evaluation required must be done by MySQL,
and the results translated back to Orca.

• MySQL’s rigid execution model—query block by query block,
and aggregation only after all tables are joined—limits plan
choices, sometimes resulting in non-optimal plans. Overcom-
ing this would require extending the MySQL executor to handle
a broader class of plans.

• Converting Orca plans to MySQL executable plans may become
more difficult; it would probably not be possible to use simple
skeleton plans.

Orca’s cost model—for example, relatively high index lookup
and hash join costs—needs fine-tuning. In general, costing for-
mulas need to be updated to better suit MySQL’s InnoDB storage
engine. Producing distributed query execution plans from Orca
to benefit such plans in MySQL is a possibility. We also plan to
handle string histograms in which bucket boundaries have long
common prefixes.

To put this work in a larger context, SQL query optimizer
architectures require a second look with a view to decomposing
them into reusable, API-level components such as cardinality
estimator; costing; logical and physical rewrite rules; join enu-
meration; join order selection; and so on. Orca and such projects
as those based on Apache Calcite [3, 8] have taken good first
steps, and this work has demonstrated that the topic merits fur-
ther explorations. The field of compilers, for example, has long
benefited from a somewhat reminiscent approach (common front-
end, intermediate representation, language runtime, back-end,
and so on) [14, 16, 24].

ACKNOWLEDGMENTS
We thank the anonymous reviewers for valuable feedback.

REFERENCES
[1] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollár, Arunprasad P. Marathe,

Vivek R. Narasayya, and Manoj Syamala. 2004. Database Tuning Advisor for
Microsoft SQL Server 2005. In (e)Proc. of the VLDB 2004 Conference, Toronto,
Canada. 1110–1121. https://doi.org/10.1016/B978-012088469-8.50097-8

522

[2] Amazon. 2022. Working with parallel query for Amazon Aurora MySQL. Re-
trieved Feb. 8, 2022 from https://docs.aws.amazon.com/AmazonRDS/latest/
AuroraUserGuide/aurora-mysql-parallel-query.html

[3] Apache Software Foundation 2022. Apache Calcite. Apache Software Founda-
tion. Retrieved February 23, 2022 from https://calcite.apache.org/docs/

[4] Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Lin-
qiang Ouyang, Peng Wang, Yijing Wang, Ray Kuan, Zhenjun Liu, Feng Zhu,
and Tong Zhang. 2020. POLARDB Meets Computational Storage: Efficiently
Support Analytical Workloads in Cloud-Native Relational Database. In 18th
USENIX Conference on File and Storage Technologies, FAST 2020, Santa Clara,
CA, USA. USENIX Association, 29–41. https://www.usenix.org/conference/
fast20/presentation/cao-wei

[5] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib,
Simon Weaver, and Jingren Zhou. 2008. SCOPE: easy and efficient parallel
processing of massive data sets. Proc. VLDB Endow. 1, 2 (2008), 1265–1276.
https://doi.org/10.14778/1454159.1454166

[6] Alex Depoutovitch, Chong Chen, Jin Chen, Paul Larson, Shu Lin, Jack Ng,
Wenlin Cui, Qiang Liu, Wei Huang, Yong Xiao, and Yongjun He. 2020. Taurus
Database: How to be Fast, Available, and Frugal in the Cloud. In Proc. of the
2020 SIGMOD Conference 2020, online conference [Portland, OR, USA]. ACM,
1463–1478. https://doi.org/10.1145/3318464.3386129

[7] Amr El-Helw, Venkatesh Raghavan, Mohamed A. Soliman, George C. Caragea,
Zhongxian Gu, and Michalis Petropoulos. 2015. Optimization of Common
Table Expressions in MPP Database Systems. Proc. VLDB Endow. 8, 12 (2015),
1704–1715. https://doi.org/10.14778/2824032.2824068

[8] Lekshmi B. G., Andreas Becher, Klaus Meyer-Wegener, Stefan Wildermann,
and Jürgen Teich. 2020. SQL Query Processing Using an Integrated FPGA-
based Near-Data Accelerator in ReProVide. In Proceedings of the 23rd Inter-
national Conference on Extending Database Technology, EDBT 2020, Copen-
hagen, Denmark, March 30 - April 02, 2020. OpenProceedings.org, 639–642.
https://doi.org/10.5441/002/edbt.2020.83

[9] GitHub, Inc. 2021. gporca. GitHub, Inc. Retrieved October 7, 2021 from
https://github.com/greenplum-db/gporca

[10] Goetz Graefe. 1990. Encapsulation of Parallelism in the Volcano Query Pro-
cessing System. In Proc. of the 1990 ACM SIGMOD Conference, Atlantic City,
NJ, USA. 102–111. https://doi.org/10.1145/93597.98720

[11] Goetz Graefe. 1995. The Cascades Framework for Query Optimization. IEEE
Data Eng. Bull. 18, 3 (1995), 19–29. http://sites.computer.org/debull/95SEP-CD.
pdf

[12] VMWare, Inc. 2021. Tuning SQL Queries. VMWare, Inc. Retrieved October
12, 2021 from https://gpdb.docs.pivotal.io/5200/best_practices/tuning_queries.
html

[13] Navin Kabra and David J. DeWitt. 1999. OPT++: An Object-Oriented Imple-
mentation for Extensible Database Query Optimization. VLDB J. 8, 1 (1999),

55–78. https://doi.org/10.1007/s007780050074
[14] Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework

for Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM Interna-
tional Symposium on Code Generation and Optimization (CGO 2004), San Jose,
CA, USA. IEEE Computer Society, 75–88. https://doi.org/10.1109/CGO.2004.
1281665

[15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter A. Boncz, Alfons Kemper,
and Thomas Neumann. 2015. How Good Are Query Optimizers, Really? Proc.
VLDB Endow. 9, 3 (2015), 204–215. https://doi.org/10.14778/2850583.2850594

[16] Kevin O’Brien, Kathryn M. O’Brien, Martin Hopkins, Arvin Shepherd, and
Ronald C. Unrau. 1995. XIL and YIL: The Intermediate Languages of TOBEY.
In Proceedings ACM SIGPLANWorkshop on Intermediate Representations (IR’95),
San Francisco, CA, USA. ACM, 71–82. https://doi.org/10.1145/202529.202537

[17] Hamid Pirahesh, Joseph M. Hellerstein, and Waqar Hasan. 1992. Exten-
sible/Rule Based Query Rewrite Optimization in Starburst. In Proc. of the
1992 ACM SIGMOD Conference, San Diego, CA, USA. ACM Press, 39–48.
https://doi.org/10.1145/130283.130294

[18] Norvald H. Ryeng. 2020. Refactoring query processing in MySQL. Carnegie
Mellon University. Retrieved February 2, 2022 from https://www.youtube.
com/watch?v=u7JOinvbMxc

[19] Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A.
Lorie, and Thomas G. Price. 1979. Access Path Selection in a Relational
Database Management System. In Proc. of the 1979 ACM SIGMOD Conference,
Boston, MA, USA. ACM, 23–34. https://doi.org/10.1145/582095.582099

[20] Srinath Shankar, Rimma V. Nehme, Josep Aguilar-Saborit, Andrew Chung,
Mostafa Elhemali, Alan Halverson, Eric Robinson, Mahadevan Sankara Subra-
manian, David J. DeWitt, and César A. Galindo-Legaria. 2012. Query optimiza-
tion in Microsoft SQL Server PDW. In Proceedings of the ACM SIGMOD 2012,
Scottsdale, AZ, USA. ACM, 767–776. https://doi.org/10.1145/2213836.2213953

[21] Mohamed A. Soliman, Lyublena Antova, Venkatesh Raghavan, Amr El-Helw,
Zhongxian Gu, Entong Shen, George C. Caragea, Carlos Garcia-Alvarado,
Foyzur Rahman, Michalis Petropoulos, Florian Waas, Sivaramakrishnan
Narayanan, Konstantinos Krikellas, and Rhonda Baldwin. 2014. Orca: a mod-
ular query optimizer architecture for big data. In Proc. of the SIGMOD 2014,
Snowbird, UT, USA. ACM, 337–348. https://doi.org/10.1145/2588555.2595637

[22] Transaction Processing Performance Council 2021. TPC-DS Version 2 and
Version 3. Transaction Processing Performance Council. Retrieved October 7,
2021 from http://tpc.org/tpcds/default5.asp

[23] Transaction Processing Performance Council 2021. TPC-H Vesion 2 and Version
3. Transaction Processing Performance Council. Retrieved October 7, 2021
from http://www.tpc.org/tpch/

[24] Wikipedia. 2022. LLVM. Retrieved Feb. 10, 2022 from https://en.wikipedia.
org/wiki/LLVM

523

