
Branch-and-Benders-Cut Algorithm for the Weighted
Coflow Completion Time Minimization Problem

Youcef Magnouche, Sebastien Martin,

Jeremie Leguay

Huawei Technologies, France Research Center

Boulogne-Billancourt, France

{firstname.name}@huawei.com

Francesco De-Pellegrini, Rachid El-Azouzi,

Cedric Richier

University of Avignon

Avignon, France

{firstname.name}@univ-avignon.fr

ABSTRACT
An ever increasing amount of data is being processed by par-

allel computation frameworks such as MapReduce [9] in data

centers. In this context, the coflow scheduling problem aims

at accelerating the completion of data processing tasks. In par-

ticular, it consists in scheduling individual flows according to

their relationship at application level, i.e. their membership to

coflows, such that the total average weighted coflow comple-

tion time is minimized. In this paper, we propose a compact

mixed integer linear formulation for the problem and apply a

Branch-and-Benders-Cut algorithm to efficiently solve it. On

a diverse set of instances, we show that our algorithm signifi-

cantly improves the CPU time computation compared to the

solution of the compact model.

1 INTRODUCTION
Most cloud providers nowadays feature the provisioning of

cluster computing as a service. Customers can launch their

compute-intensive tasks on big data frameworks such asMapRe-

duce [9] or Spark [21]. Such software frameworks rely on the

so called dataflow computing model for large-scale data pro-

cessing. It consists in a distributed computing paradigm where

each intermediate computation stage is distributed over a set

of nodes and its output is transferred to nodes hosting the next

stage. In between two computation stages, these dataflows are

producing a set of flows, called a coflow [5], that are bound

together by the same application task. Coflows represent a

standard traffic pattern abstraction in datacenters. In MapRe-

duce for instance, a coflow is a set of concurrent flows sent

from mapper nodes, i.e., senders, to a set of reducer nodes, i.e.,
receivers. Such flows are launched after mappers have com-

pleted their computing tasks. The data transfer phase between

mappers and reducers is called the shuffle phase and completes

only when all constituent flows are over.

The research line on datacenter coflow scheduling has been

initiated by the the seminal work of Chowdhury and Stoica [5,

8]. They observed that traffic management policies accounting

for the coflow structure significantly improve application-level

performance. Since then coflow scheduling is a mainstream

topic in network traffic engineering. The main challenge lies

© 2022 Copyright held by the owner/authors(s). Published in Proceedings of the
10th International Network Optimization Conference (INOC), June 7-10, 2022,
Aachen, Germany. ISBN 978-3-89318-090-5 on OpenProceedings.org
Distribution of this paper is permitted under the terms of the Creative
Commons license CC-by-nc-nd 4.0.

in the fact that computing frameworks can generate simultane-

ously thousands of flows per job [8]. When many jobs run in

parallel, network congestion occurs due to concurrent coflows.

In general, the coflow scheduling problem to minimize the

Coflow Completion Time (CCT) is strongly NP-hard and exact

solutions based on time-indexed MILPs (Mixed Integer Linear

Programs) suffer obvious scalability issues. Furthermore, it has

been proved recently that, for a related open-shop scheduling

problem, approximating the optimal solution is only possible

by a factor of 2−𝜖 , for any 𝜖 > 0 [4]. In other words, this renders

not viable to provide tight approximations of the optimal solu-

tion in a short amount of time. In fact, to date, the best deter-

ministic approximation ratio equals to 4 (and 5 if coflows have

release times) [1, 19, 20]. Even schedulers relying on relaxation

of time-indexed programs face issues related to the number

of variables [4, 15, 19]. Several types of schedulers have been

proposed [4] in the literature. Clairvoyant schedulers work

under perfect information on traffic sources, i.e., engaged ports,

flow volumes and flow release times. Semi-clairvoyant sched-

ulers [23] are robust to the lack of information, in particular

on exact flow volumes. Non-clairvoyant methods have been

studied as well in [8, 10, 11, 22] when prior knowledge is not

available, e.g., flow volumes, coflow release times or even the

coflow structure per flow is unknown [22].

One popular idea appearing in many research works sug-

gests to equalize flow transfer times per coflow [6] to let all

flows of a coflow finish at the same time. In fact, finishing some

flows before the bottlenecked one is irrelevant w.r.t. the CCT

of a coflow. In standard flow scheduling, shortest-flow-first

heuristics grant average flow service time minimization [17].

Varys [7] is a baseline reference for clairvoyant heuristics.

Even though recent scheduling algorithms like Sincronia [1]

have better performance, Varys has introduced several key

concepts at once. First, it combines shortest-flow-first, with

coflow equalization. Furthermore, it works based on the notion

of bottleneck link of a coflow, that is the link of the fabric which
experiences the maximal data transfer time. The schedule is

performed using a priority order: the priority of coflows is as-

signed dynamically and given to the coflow that would end

the soonest in isolation (i.e, if alone in the network). Hence,

its traffic on the bottleneck link is served in priority, possibly

pre-empting lower-priority coflows.

Sincronia [1, 20] resorts to a related primal-dual problem

and provides a greedy algorithm which is a (2 − 2

𝑛+1) approx-
imation for the primal problem. It relies on the results for

concurrent open shop scheduling on parallel machines de-

scribed in [16]. At each iteration, it computes the total load

Series ISSN: 2510-7437 75 10.48786/inoc.2022.14

https://OpenProceedings.org/
http://dx.doi.org/10.48786/inoc.2022.14

of each link and finds the link with the heaviest load. It then

chooses the coflow using the Smith rule, i.e., the minimum

ratio of weight and load on the bottleneck. It iterates on the

unsorted coflows until a sorting of all the coflows is obtained.

Once the order it decided by Sincronia, it has been shown that

any work-conserving rate allocation mechanism achieves a

weighted coflow completion time within 4 of the optimal as

long as coflows are prioritized respecting the order.

While a number of good heuristics and approximation algo-

rithms have already been proposed for the Weighted Coflow

Completion Time Minimization (WCCTM) problem, little has

been done on exact methods to attempt to solve optimally the

problem at larger scale. In this context, we model the problem

as an integer linear program to capture the case of a general

network topology where routes can be selected, i.e., multi-

ple routes are possible for flows of a coflow having the same

source-destination pairs. Furthermore, we derive a Branch-

and-Benders-Cut algorithm (BBC) to decouple the decisions

for completion times (Master problem) and individual flow

rates (Sub-problem). Based on completion time decisions, we

show how the sub-problems can be pre-processed, by removing

redundant constraints and variables. Our extensive numerical

exploration indicates that the proposed Branch-and-Benders-

Cut algorithm accelerates the solving time compared to the

compact model.

The paper is organized as follows. Sec. 2 introduces some

definitions and notations. Sec 3 presents a compact model

for the WCCTM problem. Sec. 4 describes the Branch-and-

Benders-Cut algorithm. Sec. 5 reports numerical results and

Sec. 6 concludes the paper.

2 NOTATIONS
In this section we give some definitions and notations used

throughout this paper. Consider a directed graph 𝐺 = (𝑉 ,L)
where 𝑉 is a set of nodes and L is a set of arcs with capacity

𝑏𝑙 ∈ R+, for all 𝑙 ∈ L. We consider that 𝐾 coflows are running

in parallel C = {𝐶1,𝐶2, ...,𝐶𝐾 }. Each coflow𝐶𝑘 is composed of

𝑛𝑘 flows with 𝐹𝑘 = {𝑓 𝑘1, 𝑓 𝑘2, .., 𝑓 𝑘𝑛𝑘 }. Each constituent flow

𝑓 𝑘 𝑗 is defined by a 4-tuple (𝑠𝑘 𝑗 , 𝑑𝑘 𝑗 ,P𝑘 𝑗 , 𝑣𝑘 𝑗) where 𝑠𝑘 𝑗 , 𝑑𝑘 𝑗 ∈
𝑉 are source and destination nodes, respectively. We denote

P𝑘 𝑗 the set of paths between 𝑠𝑘 𝑗 to 𝑑𝑘 𝑗 , and 𝑣𝑘 𝑗 the flow

volume, i.e., the total amount of data to be transferred by flow

𝑓 𝑘 𝑗 . A coflow is considered completed only when all its flows

are over and the last time when the coflow is active is called

the Coflow Completion Time (CCT) for coflow 𝐶𝑘 . We use𝑤𝑘 to

denote the weight, i.e., the importance of each coflow 𝐶𝑘 ∈ C,
that is typically given by the application scheduler.

3 COMPACT MODEL
We now present a time-indexed compact model for the WC-

CTM problem (based on the discretization of a time horizon).

Let 𝑇 be a time-horizon that we partition into 𝑇𝑠 disjoint

slots of duration Δ units of time, denoted by 𝑢. Let T =

{1, . . . ,𝑇𝑠 }. The model computes the fraction of the total vol-

ume to be transferred by each flow at each time slot together

with the completion time of each coflow. We suppose that

𝑏𝑙 represents the link capacity associated with 𝑙 ∈ L, in 𝑀𝑏

per time slot. For this model, three types of variables are re-

quired: 𝑥
𝑘 𝑗
𝑝 (𝑡) ∈ [0, 1], which represents the fraction of the

total volume of flow 𝑓 𝑘 𝑗 , associated with coflow 𝐶𝑘 ∈ C sent

during time-slot 𝑡 ∈ T on path 𝑝 ∈ P𝑘 𝑗 ; 𝑦𝑘 (𝑡) ∈ {0, 1}, which
equals 1 if time-slot 𝑡 ∈ T is the final time-slot used by coflow

𝐶𝑘 ∈ C, 0 otherwise; 𝛾𝑘 (𝑡) ∈ [0, 1], which represents the un-

used percentage of the final time-slot 𝑡 ∈ T (the last where

coflow 𝐶𝑘 ∈ C is active). Note that for a coflow 𝐶𝑘 ∈ C, the
completion time 𝐶𝑇𝑘 equals

∑
𝑡 ∈T

Δ(𝑡𝑦𝑘 (𝑡) − 𝛾𝑘 (𝑡)). Hence the

WCCTM problem writes as the following MILP:

min

∑
𝐶𝑘 ∈C

𝑤𝑘

∑
𝑡∈T

Δ(𝑡𝑦𝑘 (𝑡) − 𝛾𝑘 (𝑡)) (1)∑
𝑡∈T

𝑦𝑘 (𝑡) = 1 ∀𝐶𝑘 ∈ C, (2)∑
𝑡∈T

∑
𝑝∈P𝑘 𝑗

𝑥
𝑘 𝑗
𝑝 (𝑡) = 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , (3)

𝛾𝑘 (𝑡) ≤ 𝑦𝑘 (𝑡) ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T (4)∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

𝑣𝑘 𝑗
∑

𝑝∈P𝑘 𝑗
:𝑙∈𝑝

𝑥𝑘 𝑗 (𝑡) ≤ 𝑏𝑙 ∀𝑙 ∈ L, ∀𝑡 ∈ T, (5)

𝑇𝑠∑
𝑡′=𝑡

(
∑

𝑝∈P𝑘 𝑗

𝑥
𝑘 𝑗
𝑝 (𝑡 ′) − 𝑦𝑘 (𝑡 ′)) ≤ 0 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T, (6)∑

𝑓 𝑘 𝑗 ∈𝐹𝑘

𝑣𝑘 𝑗
∑

𝑝∈P𝑘 𝑗
:𝑙∈𝑝

𝑥𝑘 𝑗 (𝑡) ≤ (1 − 𝛾𝑘 (𝑡))𝑏𝑙 ∀𝐶𝑘 ∈ C, ∀𝑙 ∈ L, ∀𝑡 ∈ T, (7)

0 ≤ 𝑥𝑘 𝑗 (𝑡) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T,
0 ≤ 𝛾𝑘 (𝑡) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T,
𝑦𝑘 (𝑡) ∈ {0, 1} ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T .

Constraints (2) select exactly one final time-slot for each

coflow. Constraints (3) guarantee that all flows are served.

Constraints (4) link𝑦 and 𝛾 variables. Constraints (5) represent

the port capacity constraints. Constraints (6) ensure that, for

every coflow, all flows are sent before the final time-slot. Finally,

Constraints (7) decreases the port capacity during the final

time-slot. This allows to compute the unused part of the final

time-slot of each coflow.

Model (1)-(7) is composed of one family of integer variables

and two families of continuous variables. The number of con-

tinuous variables is huge (𝑂 (|C| × 𝑛max × 𝑝max × 𝑇𝑠) where
𝑛max = max

𝐶𝑘 ∈C
{𝑛𝑘 } and 𝑝max = max

𝐶𝑘 ∈C
max

𝑓 𝑘 𝑗 ∈𝐹𝑘
{P𝑘 𝑗 }).

(a) Coflow 0, Time Slot 0 (b) Coflow 1, Time Slot 0

(c) Coflow 0, Time Slot 1 (d) Coflow 1, Time Slot 1

Figure 1: Example of two coflows where each row repre-
sents 1 time slot of duration 1𝑢.

2

INOC 2022, June 7-10, 2022, Aachen, Germany

76

In time-indexed coflow scheduling models, setting the time

slot to a smaller duration Δ provides finer rate control variables.

But, since the number of controlled variables used in the MILP

increases it would be preferable to set it to a larger value. An

example is reported in Fig. 1 with two coflows of weight 1, each

one having 1 flow of volume 1𝑀𝑏. Their traffic is sent over a

single link of capacity 1𝑀𝑏/𝑢 and the length of time horizon

is 2 units of time (2𝑢). Coflow 1 needs to wait until coflow 0

finishes to start sending traffic, due to capacity constraints.

Therefore, coflow 0 finishes after 1𝑢, and coflow 1 finishes

after 2𝑢. Then, the weighted average CCT is 1.5, which is the

optimal solution. One may argue that the model should not

be necessarily time-indexed discretized and only 1 time slot of

duration 2𝑢 allows to solve the problem optimally. In this case,

the total traffic of 2𝑀𝑏 (1Mb per coflow) can be sent in 1𝑢 as

the capacity constraints are for the single time slot, leading

to a weighted average CCT of 1, for a possibly unfeasible rate

allocation. Thus, we obtain just a lower bound of the exact

weighted average w.r.t. the CCT under a discretization with

steps of 1 time units. In general, the model accuracy increases

with the granularity of the time discretization, i.e., the smaller

the duration of time slots, the more the model is accurate.

Also, we observe that variables 𝛾𝑘 (𝑡) ∈ [0, 1] allows finer
tuning on the effective time slot size: if coflow 2 has volume

0.5𝑀𝑏, standard models in literature predict again a weighted

average CCT of 1.5 under steps of 1 time units, whereas our

model correctly reports 0.75.

We illustrate how solutions of Model (1)-(7) look like, Fig. 2

shows a bubble plot where each line represents a flow, each

color represents a coflow and each column represents a time

slot. The size of each bubble represents the volume of traffic

sent by one flow at the associated time slot. We notice that

one coflow starts at time slot 0 and finishes at time slot 20.

Also, we observe that the optimal solution is obtained in the

class of pre-emptive schedulers, where some flows may send

part of their volume during the initial time slots, whereas the

remaining volume is sent later on thus prioritizing the flows

of some other coflow. In the example this is the case of coflows

red and orange, which complete at the end of the time horizon.

Figure 2: Example with 10 Coflows with 10 flows each.
Each line represents a flow, each basic color represents
a coflow.

4 BRANCH-AND-BENDERS-CUT
Benders decomposition [3] is a well-known method for solving

large-scale combinatorial optimization problems [2]. It consists

in decomposing the original problem into one master problem

and several sub-problems. The first-stage variables are deter-

mined by solving the master problem: the sub-problems check

whether they represent a feasible optimal solution. If not, new

constraints, called Benders cuts, are added to the master prob-

lem, and the procedure is repeated. Otherwise, it stops. When

sub-problems are linear programs, the approach is guaranteed

to converge to an optimal solution.

The Benders decomposition [3] is, generally, effective when

the number of integer variables is much smaller than the num-

ber of continuous variables. This leads to a master problem

with a much smaller dimension than the original one. In the

WCCTM problem, the number of coflows is typically much

smaller than the number of flow per coflow, i.e., |C| << 𝑛𝑘 for

all C𝑘 ∈ C. Hence, the gap between the number of integer and

continuous variables is often very high.

In this paper we develop a Branch-and-Benders-Cut (BBC)

algorithm where, in contrast with the Benders decomposition

that solves the master problem at every iteration, a single

Branch-and-Cut tree is constructed and the Benders cuts are

added during the exploration of the Branch-and-Cut tree.

Developing Branch-and-Benders-Cut algorithm for WC-

CTM allows to decouple the two types of variables, keeping the

integer variables in the master problem, and the continuous

variables in the sub-problem (1 sub-problem in our case). The

master problem selects the final time-slot for every coflow and

the sub-problem checks if all flows can be sent.

Consider an integer solution 𝑦∗ ∈ {0, 1}𝐾 . The sub-problem
is equivalent to the following linear program

min −
∑

𝐶𝑘 ∈C
𝑤𝑗

∑
𝑡∈T

Δ𝛾𝑘 (𝑡) (8)∑
𝑡∈T

∑
𝑝∈P𝑘 𝑗

𝑥
𝑘 𝑗
𝑝 (𝑡) = 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , (9)

𝛾𝑘 (𝑡) ≤ 𝑦∗𝑘 (𝑡) ∀𝑡 ∈ T, ∀𝐶𝑘 ∈ C. (10)∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

∑
𝑝∈P𝑘 𝑗

:𝑙∈𝑝

𝑣𝑘 𝑗𝑥
𝑘 𝑗
𝑝 (𝑡) ≤ 𝑏𝑙 ∀𝑙 ∈ L, ∀𝑡 ∈ T . (11)

𝑇𝑠∑
𝑡′=𝑡

(
∑

𝑝∈P𝑘 𝑗

𝑥
𝑘 𝑗
𝑝 (𝑡 ′) − 𝑦∗𝑘 (𝑡 ′)) ≤ 0 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T,

(12)∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

∑
𝑝∈P𝑘 𝑗

:𝑙∈𝑝

𝑣𝑘 𝑗𝑥
𝑘 𝑗
𝑝 (𝑡) ≤ (1 − 𝛾𝑘 (𝑡))𝑏𝑙 ∀𝐶𝑘 ∈ C, ∀𝑙 ∈ L, ∀𝑡 ∈ T,

(13)

0 ≤ 𝑥𝑘 𝑗 (𝑡) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , ∀𝑡 ∈ T,
0 ≤ 𝛾𝑘 (𝑡) ≤ 1 ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T .

Constraints (9)-(13) are exactly the same constraints as (3)-(7)

respectively, after fixing the values of 𝑦 using 𝑦∗. The sub-

problem can be solved in a polynomial time since all variables

are continuous. The goal of the sub-problem is to check if there

exists a feasible allocation of traffic that respects the comple-

tion times of all coflows given by the master.

Let𝛼, Z , 𝜎,𝛾, \ be the dual variable vectors of the sub-problem

associated with Constraints (9), (10) (11), (12) and (13), respec-

tively. Let 𝑧 ∈ R be an additional variable representing the

objective value of the sub-problem, i.e., 𝑧 = − ∑
𝐶𝑘 ∈C

𝑤 𝑗
∑
𝑡 ∈T

Δ_𝑡
𝑗
.

3

INOC 2022, June 7-10, 2022, Aachen, Germany

77

The master problem consists in minimizing:∑
𝐶𝑘 ∈C

𝑤𝑘Δ
∑
𝑡 ∈T

𝑡𝑦𝑘 (𝑡) + 𝑧

under Constraints (2) and the following Benders cuts:∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

(𝛼𝑘 𝑗 −
∑
𝑡∈T

𝛾𝑘 𝑗 (𝑡)
𝑇𝑠∑
𝑡′=𝑡

𝑦𝑘 (𝑡 ′)) −
∑
𝑡∈T

(
∑
𝑙∈L

𝜎𝑙 (𝑡)𝑏𝑙

+
∑

𝐶𝑘 ∈C
(
∑
𝑙∈L

\𝑘
𝑙
(𝑡)𝑏𝑙 + Z𝑘 (𝑡)𝑦𝑘 (𝑡))) ≤ 𝑧 ∀(𝛼,𝛾, 𝜎, \, Z), (14)

∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

(𝛼𝑘 𝑗 −
∑
𝑡∈T

𝛾𝑘 𝑗 (𝑡)
𝑇𝑠∑
𝑡′=𝑡

𝑦𝑘 (𝑡 ′)) −
∑
𝑡∈T

(
∑
𝑙∈L

�̂�𝑙 (𝑡)𝑏𝑙

+
∑

𝐶𝑘 ∈C
(
∑
𝑙∈L

ˆ\𝑘
𝑙
(𝑡)𝑏𝑙 + ˆZ𝑘 (𝑡)𝑦𝑘 (𝑡))) ≤ 0 ∀(𝛼,𝛾, �̂�, ˆ\), (15)

𝑦𝑘 (𝑡) ∈ {0, 1} ∀𝐶𝑘 ∈ C, ∀𝑡 ∈ T .

where (𝛼,𝛾, �̂�, ˆ\, ˆZ) represents the extreme rays of the sub-

problem. Note that Constraints (14) are of the form 𝑔(𝑦) ≤ 𝑧
where 𝑔(𝑦) is the objective function associated to the dual

of the sub-problem (8)-(13) and non-negativity inequalities.

Constraints (15) are used in the case where the sub-problem is

unfeasible and then no Constraint (14) can be generated.

4.1 Sub-problem pre-processing
Once integer decision variables 𝑦∗ are fixed for the main prob-

lem, several pre-processing operations are possible to reduce

the size of the sub-problem, thus reducing its computational

cost. Let 𝑡∗
𝑘
be the completion time slot of coflow 𝐶𝑘 ∈ C, i.e.,

𝑦∗𝑘 (𝑡∗
𝑘
) = 1. Let 𝑡∗𝑚𝑎𝑥 = max

𝐶𝑘 ∈C
{𝑡∗
𝑘
}. The following results hold.

Proposition 1. Constraint (11) associated with time-slot
𝑡 ∈ {𝑡∗𝑚𝑎𝑥 + 1, . . . ,𝑇𝑠 } and arc 𝑙 ∈ L are redundant.

Proof. Bymultiplying every constraint (12) associatedwith

𝑡 by 𝑣𝑘 𝑗 and summing all resulting constraints, we obtain∑
𝐶𝑘 ∈C

∑
𝑓 𝑘 𝑗 ∈𝐹𝑘

𝑇𝑠∑
𝑡 ′=𝑡

∑
𝑝∈P𝑘 𝑗

𝑣𝑘 𝑗𝑥
𝑘 𝑗
𝑝 (𝑡 ′) ≤ 0 ≤ 𝑏𝑙

Every constraint (11) associated with 𝑡 can be obtained by

summing the above inequality with the following trivial con-

straints

−𝑣𝑘 𝑗𝑥𝑘 𝑗𝑝 (𝑡 ′) ≤ 0 ∀𝐶𝑘 ∈ C, 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , 𝑝 ∈ P𝑘 𝑗 , 𝑡 ′ ∈ {𝑡 + 1, . . . ,𝑇𝑠 }
and the result follows. □

Proposition 2. For all 𝐶𝑘 ∈ C, Constraints (12) associated
with 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 and time-slot 𝑡 ≤ 𝑡∗

𝑘
are redundant.

Proof. The upper bound of any Constraint (12) associated

with time-slot 𝑡 ≤ 𝑡∗
𝑘
is equal to 1. It follows that any Con-

straint (12) associated with time-slot 𝑡 ≤ 𝑡∗
𝑘
can be obtained

by summing Constraint (9) with trivial inequalities

−𝑥𝑘 𝑗𝑝 (𝑡 ′) ≤ 0, ∀𝑡 ′ ≤ 𝑡,∀𝑝 ∈ P𝑘 𝑗

and the result follows. □

Proposition 3. For all 𝐶𝑘 ∈ C, Constraints (12) associated
with 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 and time-slot 𝑡 ∈ {𝑡∗

𝑘
+ 2, . . . ,𝑇𝑠 } are redundant.

Proof. Constraint (12) associated with time-slot 𝑡 ∈ {𝑡∗
𝑘
+

2, . . . ,𝑇𝑠 } can be obtained by summing constraint (12) associ-

ated with time-slot 𝑡∗
𝑘
+ 1 and trivial inequalities

−𝑥𝑘 𝑗𝑝 (𝑡 ′) ≤ 0, ∀𝑡 ′ ∈ {𝑡∗
𝑘
+ 1, . . . , 𝑡 − 1},∀𝑝 ∈ P𝑘 𝑗

and the result follows. □

Proposition 4. Constraints (13) associated with Coflow𝐶𝑘 ∈
C, time-slot 𝑡 ∈ T \ {𝑡∗

𝑘
} and arc 𝑙 ∈ L are redundant.

Proof. By constraint (10), 𝛾𝑘 (𝑡) = 0 for all 𝑡 ∈ T \ {𝑡∗
𝑘
}.

Then Constraint (13) associated with Coflow 𝐶𝑘 ∈ C, time-

slot 𝑡 ∈ T \ {𝑡∗
𝑘
} and arc 𝑙 ∈ L can by obtained by summing

Constraint (11) associated with time-slot 𝑡 and arc 𝑙 with the

following trivial constraints

−𝑣𝑘 𝑗𝑥𝑘 𝑗𝑝 (𝑡) ≤ 0 ∀𝐶𝑘′ ∈ C \ {𝐶𝑘 }, 𝑓 𝑘 𝑗 ∈ 𝐹𝑘′, 𝑝 ∈ P𝑘
′ 𝑗

and the result follows. □

Proposition 5. For all 𝐶𝑘 ∈ C, flow 𝑓 𝑘 𝑗 ∈ 𝐹𝑘 and path
𝑝 ∈ P𝑘 𝑗 , variables 𝑥𝑘 𝑗𝑝 (𝑡) associated with 𝑡 ∈ {𝑡∗𝑚𝑎𝑥 +2, . . . ,𝑇𝑠 }
can be removed.

Proof. By definition,𝑦∗𝑘 (𝑡) = 0 for all 𝑡 ∈ {𝑡∗𝑚𝑎𝑥+2, . . . ,𝑇𝑠 }.
Therefore, by Constraints (12), 𝑥

𝑘 𝑗
𝑝 (𝑡) = 0 for all 𝐶𝑘 ∈ C, flow

𝑓 𝑘 𝑗 ∈ 𝐹𝑘 , path 𝑝 ≤ P𝑘 𝑗 and 𝑡 ∈ {𝑡∗𝑚𝑎𝑥 + 2, . . . ,𝑇𝑠 }. □

Note that, there must exists an optimal dual solution for the

sub-problem where all dual variables associated with redun-

dant constraints are equal to 0.

5 NUMERICAL RESULTS
In this section we present the numerical results obtained from

the compact model and BBC algorithm. The algorithms have

been implemented in C++ using Cplex 12.6 [12] as MILP-solver

on a machine with Intel(R) Xeon(R) CPU E5-4627 v2of 3.30GHz

with 504GB RAM, running under Linux 64 bits. A maximum

of 1 thread has been used. A time limit is set to 3 hours and a

memory limit for the B&B tree is set to 5Gb.

In BBC algorithm, constraints (14) and (15) are exponential

in number. They are generated dynamically thanks to the lazy
constraint callback of Cplex. Each time an integer solution is

found for the master problem, the sub-problem is solved. If

it is feasible, an optimality Benders cut (14) is added. Other-

wise, a feasiblity Benders cut (15) is added. All Benders cuts

in the master problems are separated iteratively. In order to

avoid starting the Branch-and-Benders-Cut algorithm without

Benders cuts, some of them can be added to the first master

problem which help the convergence of the algorithm. The

procedure we propose consists in supposing that all coflows

finish before a tagged time slot 𝑡 ∈ T . Therefore, by solving

the sub-problem for each 𝑡 ∈ T , we may generate 𝑇𝑠 Benders

cuts for the master problem.

To evaluate our algorithm, we use two types of network

instances. We first consider public instances from SNDLib [18]

and the Internet Topology Zoo [13] that are a mix of real (e.g.,

Abilene, BtEurope, Geant) and synthetic networks
1
. We also

1
All instances with topology and traffic information will be made public here:

https://github.com/MagYou/coflow-scheduling-benders

4

INOC 2022, June 7-10, 2022, Aachen, Germany

78

Figure 3: Numerical results on BigSwitch instances for
the CPU time and the number of branching nodes.

generate instances following the standard abstraction for data

center topologies, called the Big-Switch model [7]. This model

captures the fact that congestion only occurs at Top-of-Rack

(ToR) switches and that the core of the fabric is largely over-

provisioned [14].

More precisely, we have considered the three following

types of instances in the rest if this paper:

• Big-Switch instances, where the coflow sources are con-

nected (by arcs) to ingress ports of a Big-Switch fabric that

connects to all coflow destinations, attached to outgoing ports.

We consider several instance sizes:

− 8 ports and 64 flows : 4 coflows and 16 flows/coflow

− 12 ports and 144 flows : 8 coflows and 18 flows/coflow

− 14 ports and 196 flows : 7 and 28 flows/coflow

• SNDLib instances with the following traffic patterns:

− 30 flows : 3 coflows and 10 flows/coflow

− 50 flows : 5 coflows and 10 flows/coflow

− 60 flows: 3 coflows and 20 flows/coflow

− 100 flows flows: 5 coflows and 20 flows/coflow

• Internet Topology Zoo instances with 150 flows : 6 coflows

and 25 flows/coflow.

The length of the horizon time is set to 30 units of times. On

SNDLib and Internet Topology Zoo instances, 3 paths are com-

puted for every flow (if they exist). All coflows have been gen-

erated randomly (sources, destinations, volumes and paths).

The following figures display the comparison of the CPU

time and the number of branching nodes between the BBC

algorithm and the compact model.

Fig. 3 reports on the results of Big-Switch instances. We can

note that the compact model reaches the time limit on 60%

of the instances while the BBC algorithm reaches it on only

two instances. However the compact model generates much

less branching nodes (around 19000 in average) than the BBC

algorithm (around 550000 in average). This can be explained

by the fact that the compact model reaches the maximum

Figure 4: Optimality gaps of Varys [7] and Sincronia [1]
(state of the art heuristics) on Big-Switch instances.

time limit on all instances where it has a lower number of

branching nodes. Hence, the branching algorithm did not finish

generating all nodes. Clearly, the Branch-and-Benders-Cut

algorithm performs much better as, in practice, a small master

problem is solved at each iteration (around 910 Benders cuts

are generated on average at the end of the optimization).

Fig. 4 compares the optimality gaps for state of the art

heuristic algorithms such as Varys [7] and Sincronia [1] on Big-

Switch instances. As we can see the gap for Varys is quite high,

26.17% in average, while it is much lower for Sincronia, 6.18%

in average. While the exact method based on Benders can be

used in practice on some of the instances with a reasonable run-

ning time, it can also be used to evaluate heuristic algorithms

for benchmarking and assess their relative performance.

Figure 5: Numerical results on SNDLib instances for the
CPU time and the number of branching nodes.

Fig. 5 shows results on SNDLib instances. We can observe

that the BBC algorithm did not reach the time limit while

the compact model reaches it on 5 instances. The number of

branching nodes generated by the BBC algorithm is slightly

higher than for the compact model (for the same reason as

for Big-Switch instances) since it is around 3500 nodes on

average for the BBC algorithm and around 1500 in average for

the compact model. The number of Benders cuts generated is

5

INOC 2022, June 7-10, 2022, Aachen, Germany

79

Figure 6: Numerical results on Internet Topology Zoo in-
stances for the CPU time and the number of branching
nodes.

also small over all the instances since it is around 600 cuts in

average.

Finally, Fig. 6 shows the results for the Internet Topology

Zoo instances with 150 flows. We can see that the BBC algo-

rithm gives better results since the compact model reaches

the time limit multiple times. Similarly to previous instances,

the number of generated nodes in slightly higher for the BBC

algorithm. The number of generated Benders cuts is around

2700 cuts on average.

6 CONCLUSION
In this paper, we have addressed exact solution methods for

the Weighted Coflow Completion Time Minimization prob-

lem, which is NP-hard. The literature on coflows has mostly

addressed heuristics and approximation algorithms, and exact

solution methods are not discussed in depth to the best of the

authors’ knowledge. We have proposed a new compact model

for the CCTM problem and a Branch-and-Benders-Cut algo-

rithm has been developed which decouples continuous and

integer variables. This decomposition permits to pre-process

every sub-problem and remove a significant number of use-

less constraints and variables in advance. Our computational

results indicate that the Branch-and-Benders-Cut algorithm

for he CCTM improves significantly the CPU time compared

to the compact model and thus represents an important contri-

bution to assess the relative performance of coflow schedulers

existing in the coflow literature.

REFERENCES
[1] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agarwal,

David Shmoys, and Amin Vahdat. 2018. Sincronia: Near-optimal network

design for coflows. In Proc. ACM SIGCOMM.

[2] Simon Belieres, Mike Hewitt, Nicolas Jozefowiez, Frédéric Semet, and Tom

Van Woensel. 2020. A Benders decomposition-based approach for logistics

service network design. European Journal of Operational Research 286, 2

(2020), 523–537.

[3] Jacques F Benders. 1962. Partitioning procedures for solving mixed-

variables programming problems. Numerische mathematik 4, 1 (1962),

238–252.

[4] Mosharaf Chowdhury, Samir Khuller, Manish Purohit, Sheng Yang, and Jie

You. 2019. Near optimal coflow scheduling in networks. In The 31st ACM

Symposium on Parallelism in Algorithms and Architectures. 123–134.

[5] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A Networking Ab-

straction for Cluster Applications. In Proc. ACM HotNets workshop.

[6] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and Ion

Stoica. 2011. Managing data transfers in computer clusters with orchestra.

ACM SIGCOMM Computer Communication Review 41, 4 (2011), 98–109.

[7] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient Coflow

Scheduling with Varys. In Proc. ACM SIGCOMM.

[8] NM Mosharaf Kabir Chowdhury. 2015.

Coflow: A Networking Abstraction for Distributed Data-Parallel Applications.

Ph.D. Dissertation. University of California, Berkeley.

[9] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: Simplified data

processing on large clusters. (2004).

[10] Fahad R. Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Rowstron.

2014. Decentralized Task-Aware Scheduling for Data Center Networks. In

Proc. ACM SIGCOMM.

[11] Yuanxiang Gao, Hongfang Yu, Shouxi Luo, and Shui Yu. 2016. Information-

agnostic coflow scheduling with optimal demotion thresholds. In 2016

IEEE International Conference on Communications (ICC).

[12] IBM. [n.d.]. ILOG CPLEX Solver. https://www.ibm.com/analytics/cplex-

optimizer

[13] S. Knight, H.X. Nguyen, N. Falkner, R. Bowden, and M. Roughan. 2011. The

Internet Topology Zoo. Selected Areas in Communications, IEEE Journal

on 29, 9 (october 2011), 1765 –1775.

[14] Y. Liu, J. K. Muppala, M. Veeraraghavan, Dong Lin, and M. Hamdi. 2013. A

Survey of Data Center Network Architectures. Springer.

[15] Ruijiu Mao, Vaneet Aggarwal, and Mung Chiang. 2018. Stochastic non-

preemptive co-flow scheduling with time-indexed relaxation. In IEEE

INFOCOMWKSHPS.

[16] Monaldo Mastrolilli, Maurice Queyranne, Andreas Schulz, Ola Svensson,

and Nelson Uhan. 2010. Minimizing the sum of weighted completion

times in a concurrent open shop. Oper. Res. Lett. 38 (09 2010), 390–395.

https://doi.org/10.1016/j.orl.2010.04.011

[17] Mohammad Noormohammadpour and Cauligi S. Raghavendra. 2018. Dat-

acenter Traffic Control: Understanding Techniques and Tradeoffs. IEEE

Communications Surveys Tutorials 20, 2 (2018), 1492–1525.

[18] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly. 2007. SNDlib 1.0–

Survivable NetworkDesign Library. In Proceedings of the 3rd International

Network Optimization Conference (INOC 2007).

[19] Mehrnoosh Shafiee and Javad Ghaderi. 2018. An Improved Bound for

Minimizing the TotalWeighted Completion Time of Coflows in Datacenters.

IEEE/ACM Transactions on Networking 26, 4 (2018), 1674–1687.

[20] Zhiliang Wang, Han Zhang, Xingang Shi, Xia Yin, Yahui Li, Haijun Geng,

Qianhong Wu, and Jianwei Liu. 2019. Efficient Scheduling of Weighted

Coflows in Data Centers. IEEE Transactions on Parallel and Distributed

Systems 30, 9 (2019), 2003–2017.

[21] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, Ion

Stoica, et al. 2010. Spark: Cluster computing with working sets. HotCloud

10, 10-10 (2010), 95.

[22] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury, and Yan-

hui Geng. 2016. CODA: Toward Automatically Identifying and Scheduling

Coflows in the Dark. In Proc. ACM SIGCOMM.

[23] Tong Zhang, Fengyuan Ren, Ran Shu, and Bo Wang. 2018. Sched-

uling Coflows with Incomplete Information. In 2018 IEEE/ACM 26th

International Symposium on Quality of Service (IWQoS).

6

INOC 2022, June 7-10, 2022, Aachen, Germany

80

