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ABSTRACT
Technologies for handling massive structured or semi-structured
data have been researched extensively in database communi-
ties. However, the real-world data are largely in the form of
unstructured text, posing a great challenge to their management
and analysis as well as their integration with semi-structured
databases. Recent developments of deep learning methods and
large pre-trained language models (PLMs) have revolutionized
text mining and processing and shed new light on structuring
massive text data and building a framework for integrated (i.e.,
structured and unstructured) data management and analysis.

In this tutorial, we will focus on the recently developed text
mining approaches empowered by PLMs that can work without
relying on heavy human annotations. We will present an orga-
nized picture of how a set of weakly supervised methods explore
the power of PLMs to structure text data, with the following out-
line: (1) an introduction to pre-trained languagemodels that serve
as new tools for our tasks, (2) mining topic structures: unsuper-
vised and seed-guided methods for topic discovery from massive
text corpora, (3) mining document structures: weakly supervised
methods for text classification, (4) mining entity structures: dis-
tantly supervised and weakly supervised methods for phrase
mining, named entity recognition, taxonomy construction, and
structured knowledge graph construction, and (5) towards an
integrated information processing paradigm.

1 BACKGROUND, GOALS, AND DURATION
The massive text data available on the Web, social media, news,
scientific literature, government reports, and other information
sources contain rich knowledge that can potentially benefit a
wide variety of information processing tasks, and they can be
potentially structured and analyzed by extended database tech-
nologies. For example, one can conduct entity recognition and
concept ontology construction on a large collection of scientific
papers and extract the factual knowledge for knowledge base con-
struction and subsequent analysis. How to effectively leverage
the unstructured massive text data for downstream applications
has remained an important and active research question for the
past few decades. Recently, pre-trained language models (PLMs)
such as BERT [6] have revolutionized the text mining field and
brought new inspirations to structuring text data. To be specific,
the following paradigm is usually adopted: pre-training neural
architectures on large-scale text corpora obtained from the world
knowledge (e.g., a combination of Wikipedia, books, scientific
corpora, and web content), and then transferring their represen-
tations to task-specific data. By doing so, the knowledge encoded
in the world corpora can be effectively leveraged to enhance

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-092-9 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

downstream task performance significantly. However, the major
challenge of such a paradigm is that fully supervised fine-tuning
of PLMs usually requires abundant human annotations, which
may require domain expertise and can be expensive and time-
consuming to acquire in practice.

In this tutorial, we aim to introduce the recent developments
in (1) language model pre-training that turns massive texts into
contextualized text representations, and (2) weakly supervised
methods that transfer pre-trained representations to various tasks
for mining structures of topics, documents, and entities frommas-
sive texts. The materials introduced in our tutorial will greatly
benefit researchers who work on text mining/natural language
processing, data mining, and database systems, as well as practi-
tioners who aim to obtain structured and actionable knowledge
for targeted applications without access to abundant annotated
data.

The tutorial will be presented in 3 hours.

2 TUTORIAL OUTLINE
2.1 An Introduction to Pre-trained Language

Models [40 mins]
PLMs effectively turn world-scale text corpora into text repre-
sentations which can assist various kinds of downstream tasks
for structuring a given corpus of text data.

2.1.1 Text Embedding and PLMs. We first provide an intro-
duction to context-free embedding techniques, such as Word2Vec
[35] and JoSE [28], and recent PLMs that learn contextualized
representations based on the Transformer architecture, such as
BERT [6], RoBERTa [24], ELECTRA [5], COCO-LM [30], and GPT
[3, 37].

2.1.2 Common Usages of PLMs and Prompt-based Methods.
We will then introduce common usages of PLMs in downstream
tasks including standard fine-tuning, prompt-based fine-tuning
[8, 38], lightweight tuning [12, 21], and zero-shot learning [29, 48]
and inference [36].

2.2 Mining Topic Structures: Unsupervised
and Seed-Guided Topic Discovery [35
mins]

Automatically mining a set of meaningful topics is one efficient
way to digest large-scale text corpora. Traditional topic models
(e.g., LDA [2] and SeededLDA [16]) are prominent tools for topic
discovery. However, given the recent success of text representa-
tion learning and PLMs, it is reasonable to consider leveraging
them to the quality of discovered topics.

2.2.1 Unsupervised Topic Discovery with PLMs. The high-quality
text representations by PLMs can enhance the topic discovery
process [1, 9] by forming more coherent topics. We will present
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recent clustering methods [33, 43, 44] based on PLM embeddings
for topic discovery.

2.2.2 Seed-guided, Discriminative Topic Discovery. Recent stud-
ies attempt to incorporate user guidance for specific topics in the
topic discovery process to better fit a user’s interests and needs.
We will cover the following seed-guided topic discovery methods:
CatE [27] takes a set of category names as guidance and trains
text embeddings to capture term semantic similarity for topic
discovery while enforcing distinctiveness across topics; JoSH [34]
extends CatE into a hierarchical version by a user-provided taxon-
omy skeleton; KeyETM [11] extends the embedding-based topic
model [7] to utilize seeds in the form of topic-level priors over the
vocabulary; GTM [4] proposes a seed-guided topic-noise model
for short texts; SeeTopic [57] leverages PLM-based text represen-
tations to deal with out-of-vocabulary seeds; SeedTopicMine [62]
proposes to integrate multiple types of text representations (i.e.,
embeddings, PLMs, and topic-indicative sentences).

2.3 Mining Document Structures: Weakly
Supervised Text Classification [35 mins]

Text classification aims to assign relevant labels to documents.
Due to the cost and domain expertise needed for annotating suf-
ficient, high-quality document-label pairs for supervision, some
studies have been focusing on text classification with label names
or a small set of training samples only. In this module, we intro-
duce recent developments in weakly supervised text classification
based on text embeddings and PLMs.

2.3.1 Flat Text Classification. We will first introduce the set-
ting where the label space is flat. Related studies include ConWea
[25], LOTClass [32], X-Class [47], and ClassKG [52] that explore
PLMs as both general knowledge sources for understanding word
semantics and strong representation learning methods for classi-
fication.

2.3.2 Hierarchical Text Classification. In many scenarios, cat-
egories form a tree/DAG-structured taxonomy [59]. We will
present PCEM [49], a weakly-supervised hierarchical text classi-
fier using a small set of training samples to perform efficient path
prediction, as well as TaxoClass [40], a hierarchical multi-label
text classifier using category names only, which employs PLMs
for document-category similarity calculation.

2.3.3 Text Classification with Metadata. Documents on the
Web are usually accompanied by metadata [55]. We will cover
MetaCat [56], HIMECat [53], META[26], MotifClass [54], and
HiGitClass [61] which jointly embed categories, text, and meta-
data into the same space and synthesize training samples based
on the trained embeddings, as well as MICoL [60] which proposes
a metadata-induced contrastive learning approach for zero-shot
multi-label classification.

2.4 Mining Entity Structures: Taxonomy and
Knowledge Base Construction [60 mins]

We will first introduce fundamental tasks of extracting phrases
and named entities with distant supervision. Then, we will cover
tasks that extract relations and structures connecting entities,
such as taxonomy construction and knowledge graph construc-
tion for building a knowledge-preserving hierarchical structure.

2.4.1 Phrase Mining and Named Entity Recognition. The fac-
tual information in massive text corpora usually consists of entity

mentions described by quality phrases. Incorporating external
information from knowledge bases is a common practice in auto-
mated phrase mining (e.g., SegPhrase [23] and AutoPhrase [39]).
We will present new phrase mining methods [10, 19] that use
the self-attention mechanism in PLMs for phrase extraction. We
will also cover distantly supervised [22, 31, 46] and few-shot
[13, 14] named entity recognition methods, which aim to locate
and classify named entities in unstructured text into pre-defined
categories.

2.4.2 Taxonomy Construction. Taxonomy construction cre-
ates a hierarchy of “concept clusters” from massive corpora. Most
existing taxonomies are constructed by human experts in a labor-
intensive manner, not easily adaptable to changes in domains or
users’ interests. We will introduce CGExpan [58], FGExpan [50],
TaxoExpan [41], CoRel [15], TaxoEnrich [17], and TaxoCom [20]
to iteratively expand the user-given seed taxonomy and extract
keywords for explaining each node.

2.4.3 Relation Extraction and Knowledge Graph Construction.
Relation extraction identifies relations between named entities in
text and helps build knowledge graphs linking multiple entities
and their properties. We will cover recent studies that explore
the power of PLM for open-domain relation extraction [42, 51]
and knowledge graph construction [18, 45].

2.5 Towards an Integrated Information
Processing Paradigm [10 mins]

We have introduced a rich set of weakly supervised and PLM-
enhanced approaches developed recently for automated structur-
ing of massive text corpora. Such processing provides various
kinds of rich semantic structures for subsequent developments,
including quality phrases, typed entities, extracted relations, con-
structed knowledge graph fragments, classified documents, and
typed heterogeneous information networks. Advanced methods
can be further developed to index, organize, structure, and ana-
lyze such semantic primitives and integrate them with structured
or semi-structured data in database systems. Following this way,
an integrated information process paradigm can be developed
for organizing, manipulating, processing, and analyzing such
integrated, structured data for downstream applications. We will
outline our vision and some ongoing studies in this direction, as
a conclusion of this tutorial.

3 INTENDED AUDIENCE
Researchers and practitioners in the fields of database systems,
data mining, text mining, natural language processing, infor-
mation retrieval, and machine learning are targeted. While the
audience with a good background in these areas would benefit
most from this tutorial, we believe the material to be presented
would give both the general audience and newcomers an in-
troductory pointer to the current work and important research
topics in this field, and inspire them to learn more. Our tutorial is
designed as self-contained, so only preliminary knowledge about
basic concepts in data mining, text mining, machine learning,
and their applications is needed.

4 BIOGRAPHY
• Yu Zhang is a Ph.D. candidate in Computer Science from
UIUC. His research focuses on weakly supervised text mining
with structural information. He received the Yunni & Maxine
Pao Memorial Fellowship (2022) andWWWBest Poster Award
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Honorable Mention (2018). He has delivered tutorials in IEEE
BigData’19, KDD’21, AAAI’22, and KDD’22.

• Yunyi Zhang is a Ph.D. candidate in Computer Science from
UIUC. His research focuses on weakly supervised text mining,
text classification, and taxonomy construction. He has numer-
ous research publications at KDD, WWW, WSDM, ACL, and
EMNLP.

• Jiawei Han is the Michael Aiken Chair Professor in Computer
Science from UIUC. His research areas encompass data min-
ing, text mining, data warehousing, and information network
analysis, with over 1000 research publications. He is Fellow
of ACM, Fellow of IEEE, and received numerous prominent
awards, including ACM SIGKDD Innovation Award (2004) and
IEEE Computer Society W. Wallace McDowell Award (2009).
He delivered 50+ conference tutorials, including VLDB’19 and
KDD’20-22 tutorials on a similar theme.

5 PREVIOUS RELATED TUTORIALS
The following is a list of related tutorials with overlapped authors
delivered at major international conferences in recent years:
(1) Yu Meng, Jiaxin Huang, Jingbo Shang, and Jiawei Han, “Text-

Cube: Automated Construction and Multidimensional Explo-
ration” (VLDB’19)

(2) Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han, “On the
Power of Pre-Trained Text Representations: Models and Appli-
cations in Text Mining” (KDD’21)

(3) Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han, “Pre-
Trained Language Representations for Text Mining” (AAAI’22)

(4) Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han, “Adapting
Pretrained Text Representations to Text Mining” (KDD’22)

Differences from Previous Tutorials: Our new EDBT’23 tuto-
rial proposal includes many pieces of recently published work in
2022 (and those to be published in 2023) with a focus on weakly
supervised methods in structure mining and their big data appli-
cations. Parts of the contents have been presented in previous
tutorials, with several more recent PLMs and their new applica-
tions added (e.g., zero-shot and few-shot learning for text mining,
emergent properties, and techniques for large language models).

6 TUTORIAL MATERIAL
We will provide attendees with a website (https://yuzhimanhua.
github.io/tutorials/edbt2023.html) and upload our tutorial mate-
rials (outline, slides, references, and software links) there.
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