
REIN: A Comprehensive Benchmark
Framework for Data Cleaning Methods in ML Pipelines∗

Mohamed Abdelaal, Christian Hammacher, Harald Schöning
Software AG, Darmstadt, Germany

first.last@softwareag.com

ABSTRACT
Nowadays, machine learning (ML) plays a vital role in many
aspects of our daily life. In essence, building well-performing ML
applications requires the provision of high-quality data through-
out the entire life-cycle of such applications. Nevertheless, most
of the real-world tabular data suffer from different types of dis-
crepancies, such as missing values, outliers, duplicates, pattern vi-
olation, and inconsistencies. Such discrepancies typically emerge
while collecting, transferring, storing, and/or integrating the data.
To deal with these discrepancies, numerous data cleaning meth-
ods have been introduced. However, themajority of suchmethods
broadly overlook the requirements imposed by downstream ML
models. As a result, the potential of utilizing these data cleaning
methods in ML pipelines is predominantly unrevealed. In this
work, we introduce a comprehensive benchmark, called REIN1,
to thoroughly investigate the impact of data cleaning methods
on various ML models. Through the benchmark, we provide an-
swers to important research questions, e.g., where and whether
data cleaning is a necessary step in ML pipelines. To this end,
the benchmark examines 38 simple and advanced error detection
and repair methods. To evaluate these methods, we utilized a
wide collection of ML models trained on 14 publicly-available
datasets covering different domains and encompassing realistic
as well as synthetic error profiles.

1 INTRODUCTION
With the advent of modern computing technologies, many in-
dustries nowadays are developing robust ML models capable of
analyzing big and complex data while delivering fast and accu-
rate results on vast scales. Such results are typically harnessed by
organizations and businesses to make better decisions without
or with minimal human intervention. However, the correctness
of such decisions broadly depends on the quality of the available
data. According to a recent Gartner research [37], organizations
believe poor data quality to be responsible for an average of $15
million per year in losses. Another study by IBM in 2016 [45]
revealed that poor data quality costs the US economy $3.1 trillion
per year. These studies illustrate that data quality problems are
predominantly expensive and pervasive.

For decades, data quality has been an active research area. In
this context, the data management community tackled the data
quality problems as a part of the ETL workflows. Accordingly, nu-
merous proposals have been introduced to automatically detect
and/or repair data discrepancies [10, 12, 20, 32, 44, 46]. In fact,
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only a small fraction of these proposals considered the hetero-
geneity profiles of data errors while discovering and repairing the
erroneous instances. In other words, most proposed techniques
are dedicated to serve only one error type. Moreover, most of
such methods have been developed in isolation from the down-
stream ML applications. Thus, the consequences of adopting
such cleaning methods for predictive tasks are broadly concealed.
Accordingly, a challenge of selecting the most well-suited clean-
ing strategies (i.e., combinations of error detection and repair
methods) in ML pipelines arises.

In this paper, we tackle this challenge through introducing
a benchmark framework, referred to as REIN. The main goal
of REIN is to thoroughly investigate the interplay between data
cleaning andMLmodeling. Through extensive experiments, REIN
examines plenty of cleaning strategies in combination with var-
ious ML models, covering classification, regression, clustering,
and AutoML models. In REIN, we evaluate the error detection
and repair methods while being adopted as stand-alone methods
and as components in ML pipelines. To this end, it is necessary
to possess the ground truth of the available dirty datasets. Nev-
ertheless, it is not usually straightforward to find such datasets
which are also well-suited for ML tasks. Another challenge of
conducting such a comprehensive study is the scale of the in-
tended experiments. The number of models to be trained are
exploded due to involving plenty of error detection and repair
methods (cf. Section 2). For such detection and repair methods, it
is also crucial to provide the necessary configurations and signals,
i.e., patterns, rules, and helping functions. Finally, ML models
are inherently probabilistic, where resampling may change the
results. Hence, we need to validate the conclusions obtained from
the ML experiments.

In detail, the paper provides the following contributions: (1)
We define an architectural framework to systematically evalu-
ate error detection and repair tools dedicated to tabular data. In
addition to the traditional evaluation measures relative to the
ground truth, REIN enables data scientists and practitioners to
properly judge their detection and repair methods using the per-
formance of several predictive models. Moreover, REIN utilizes
the intersection over union (IoU) metric to quantify the similari-
ties between data cleaning methods. (2) We design a benchmark
controller that efficiently manages the other components in the
framework. Such a controller leverages the design-time knowl-
edge, e.g., the error types and the ML tasks, to broadly sidestep
unnecessary experiments, thus reducing the complexity of run-
ning the benchmark. (3) We provide a classification of the most
prominent error detection and repair methods according to their
methodology and the required configurations. (4) We examine
the performance of the involved ML models in different scenarios
which are characterized by the data version, i.e., ground truth,
dirty, or repaired data. (5) We evaluate scalability of the error
data cleaning methods through using small, medium, and large
datasets as inputs to these methods. Moreover, we evaluate the
robustness of such methods through repeating the experiments
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while monotonically increasing the error rate. (6) We adopt the
Wilcoxon signed-rank test with continuity correction to compen-
sate for the randomness inherited in the training process. To the
best of our knowledge, REIN is the first large-scale benchmark
framework which evaluates the data cleaning methods from dif-
ferent perspectives, including detection and repair performance,
predictive accuracy, robustness, and scalability.

2 BENCHMARK OVERVIEW
In this section, we introduce the architecture of REIN together
with our assumptions. REIN comprises several data processing
and evaluation steps. Specifically, several dirty datasets Φ− =

𝜙−
1 , · · · , 𝜙

−
𝑛 , 𝜙

−
𝑖

∈ R𝑢×𝑣 are used as inputs to different error
detectors 𝛼1, · · · , 𝛼𝑚 , where the superscript ‘–’ denotes a dirty
dataset and 𝑢, 𝑣 denote the number of records and attributes
in 𝜙−

𝑖
. Afterward, the erroneous instances, identified by each

detection method, are replaced with repair candidates using a
number of data repair methods 𝛽1, · · · , 𝛽𝑘 . The result of this
step is a new set of repaired datasets Φ+ = 𝜙+

𝑖,1, · · · , 𝜙
+
𝑖,𝜖
, where

𝜖 =𝑚 ×𝑘 represents the number of generated repair versions for
each dirty dataset 𝛼𝑖 and the superscript ‘+’ denotes a repaired
dataset. Finally, each repaired dataset 𝜙+

𝑖, 𝑗
is sampled to train

several ML models 𝛾1, · · · , 𝛾ℎ , where ℎ is the number of involved
ML models. Thus, the number of ML experiments for each dirty
dataset 𝜙−

𝑖
is (𝜖 + 1) ×ℎ × 𝑠 , where each experiment is repeated 𝑠

times to estimate themeans and standard deviations, and the dirty
version is added to the number of generated repaired versions.

To realize such a large-scale benchmark, we implemented the
architecture depicted in Figure 1. A data repository, i.e., Post-
greSQL database, is utilized to store the ground truth Φ𝑔 , the
dirty data Φ− , and the set of generated repaired versions Φ+.
To properly control the experiments, an error injection module
generates different types of errors with various error rates. Prac-
tically speaking, the task of error injection is carried out in an
offline phase before running the experiments (cf. Section 5 for
more details). Another component is the data cleaning toolbox,
which is a pool containing all available error detection and re-
pair tools. Some of these tools, such as NADEEF, HoloClean, and
OpenRefine, cannot be utilized without providing themwith a set
of cleaning signals. Examples of such signals include functional
dependency constraints, integrity constraints, knowledge bases,
patterns, and pre-estimated configurations.

The main component in REIN is the benchmark controller,
which connects all other components in the benchmark. The
purpose of such a controller is three-fold: First, it smoothly ex-
changes the ground truth Φ𝑔 , the dirty Φ− , and the repaired data
Φ+ among the different modules. Second, it avoids unnecessary
error detection and repair operations exploiting prior knowledge
about the dirty datasets. For example, if a dataset is known to
have duplicates (e.g., the Citation dataset), it is meaningless to
run rule violation or outlier detection methods. Third, it exploits
the prior knowledge to adapt the data preparation steps in ac-
cordance with the associated ML tasks. The last component in
the architecture is the evaluation module, which serves the error
detection and repair methods as well as the ML models. For in-
stance, the evaluation module leverages several quality metrics
to estimate the predictive performance of ML models trained on
the ground truth, the dirty and the repaired data.

Another component is a pool ofML models which comprises a
wide collection of classification, regression, and clustering meth-
ods. Moreover, REIN also examines two AutoML algorithms to
check the performance of fully-automated pipelines consisting

of data cleaning and modeling modules. Finally, an evaluation
module examines the performance of data cleaning and modeling
methods in terms of four metrics, including accuracy, latency,
scalability, and robustness (cf. Section 6). Due to space constraints,
we define in the README file of the source code: (1) how to run
the benchmark with/without the ground truth of dirty datasets,
and (2) how to readily extend the REIN framework by adding
new datasets, ML models, and data cleaning tools.
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Data Repair
Tools

Data Cleaning Toolbox

Error Injection
Module

Evaluation M
odule (Accuracy,

Scalability, R
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Figure 1: Benchmark architecture

3 DATA CLEANING METHODS
In this section, we provide an overview of the examined error
detection and repair methods.

3.1 Error Detection Methods
In REIN, we selected 19 publicly-available error detection meth-
ods, which deal with the most common attribute and class errors
in tabular data2. Table 1 lists the error detection methods and
their targeted error types. Moreover, the table comprises the
configurations and/or signals, i.e., patterns, constraints, helping
functions, and knowledge bases, necessary for running each de-
tection method. In REIN, we classify the error detection methods
according to their methodology into two main categories, includ-
ing (I) Non-learning methods and (II) ML-supported methods.
As its name implies, the former category includes the methods
and tools which detect errors using either a set of user-provided
knowledge base, business rules, integrity constraints, or using
a set of statistical measures. Each of these methods and tools
typically tackle specific error types, e.g., duplicates, outliers, or
missing values. The second category comprises the methods, e.g.,
Picket, ED2, and RAHA, which formulate the error detection
task as a classification problem. These methods initially extract a
set of features for each attribute. Such auto-generated features
enable a classifier to differentiate between clean and dirty data
samples. To train such a classifier, some training samples are
selected to be labeled by an oracle. Below, we introduce the error
detectors in each category.

Non-Learning Detectors: The firstmethod in Table 1 is KATARA
[10] which aligns the input dirty dataset with crowdsourced
knowledge bases to identify and correct data samples that vi-
olate semantic patterns. To detect rule and pattern violations,
NADEEF [12] treats data quality rules holistically via provid-
ing an interface for implementing denial constraints and other
user-defined functions. Another relevant work is HoloClean [46]
which combines qualitative and quantitative signals, e.g., denial
constraints and correlations, in a statistical model that enables

2Attribute errors occur in the training features, while class errors occur in the labels
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Table 1: Examined error detection and repair methods (The index (Idx) and abbreviation (Abbr) are used to refer to the
detection and repair methods in the figures of Section 6)
Idx. Detector Abbr. Cat. Tackled Errors Configs. Idx. Repair Method Abbr. Cat. Tackled Errors Configs.

K KATARA [10] — I Pattern violations Knowledge Base 1 Ground Truth GT I — —
N NADEEF [12] — I Rule violations FD Rules, Patterns 2 Delete — I — —
F FAHES [44] — I Missing Values — 3 Imputation: Mean-Mode Impute I MV/Outliers —
H HoloClean [46] Holo I Rule violations Denial Constraints 4 Imputation: Median-Mode Impute I MV/Outliers —
B dBoost [34] — I Outliers Hyperparams 5 Imputation: Mode-Mode Impute I MV/Outliers —
O OpenRefine [19] OpnR I Inconsistencies Clusters 6 Imputation: missForest [51] MISS-Mix I MV/Outliers —
I Outlier Detector: IF [30] IF I Outliers Hyperparams 7 Imputation: DataWig [7] DataWig-Mix I MV/Outliers —
S Outlier Detector: SD [55] SD I Outliers Hyperparams 8 Imputation: missForest-missForest [51] MISS-Sep I MV/Outliers —
Q Outlier Detector: IQR [55] IQR I Outliers Hyperparams 9 Imputation: missForest-DataWig MISS-Datawig I MV/Outliers —
V MV Detector [36] MVD I Missing Values — 10 Imputation: Decision Tree-missForest DT-MISS I MV/Outliers Hyperparams
D Key Collision [29] DuplD I Duplicates Key Columns 11 Imputation: Bayesian Ridge-missForest Bayes-MISS I MV/Outliers Hyperparams
Z ZeroER [54] — I Duplicates Blocking Functions 12 Imputation: KNN-missForest KNN-MISS I MV/Outliers Hyperparams
C CleanLab [39] — I Mislabels Hyperparams 13 HoloClean [46] Holo I MV/Rule Violation Denial Constraints
M Min-K [2] Min I Holistic Hyperparams 14 OpenRefine [19] OpenR I Inconsistencies Clusters
X Max Entropy [2] Max I Holistic Hyperparams 15 BARAN [32] — I Holistic Labels
T Metadata-Driven [53] Meta II Holistic Labels 16 CleanLab [39] — II Mislabels —
R RAHA [33] — II Holistic Labels 17 ActiveClean [26] — II — Repairs, Labels
E ED2 [38] — II Holistic Labels 18 BoostClean [25] — II — Repair, Labels
P Picket [31] — II Holistic — 19 CPClean [22] — II — Hyperparams, Repairs

detecting and repairing missing values and rule/constraint vio-
lations. To identify inconsistencies and pattern violations, the
OpenRefine tool [19] enables users to visually explore the dirty
datasets through faceting and filtering operations. FAHES [44] is
another tool which detects disguisedmissing values, e.g., "999999"
for a phone number. To this end, FAHES employs a syntactic pat-
tern detection module for categorical data and a density-based
outlier detection module for numerical data. To detect explicit
missing values, REIN implements a method to find empty or NAN
entries.

dBoost [34] is an outlier detection method which integrates
several of the most widely applied outlier detection algorithms,
including histograms, Gaussian, and multivariate Gaussian mix-
tures. To find the optimal hyperparameters for such algorithms,
dBoost employs random search, where the search space is all
the possible configurations. Other outlier detection methods in-
volve Standard Deviation (SD), Interquartile Range (IQR) [55],
and Isolation Forest (IF) [30]. The former method annotates a
cell 𝑥 ∈ 𝐴, where 𝐴 denotes an attribute, as an outlier if it is 𝑛
numbers of standard deviations away from the mean of entries
in 𝐴. A more resistant statistical measure is IQR, defined as the
difference between the 25th and 75th percentiles of an attribute
A, i.e., 𝐼𝑄𝑅𝐴 = 𝑄3−𝑄1. In this case, an outlier is any value laying
outside the range of [𝑄1 − 𝑘 × 𝐼𝑄𝑅𝐴, 𝑄3 + 𝑘 × 𝐼𝑄𝑅𝐴], where 𝑘
and 𝑛 are hyperparameters. The latter method targets identify-
ing outliers without profiling all data samples. Specifically, the
IF method builds an ensemble of isolation binary trees for the
dirty dataset, and outliers are the data samples that have shorter
average path lengths on the binary trees.

To detect duplicates, REIN examines two methods, namely
Key Collision [29] and ZeroER [54]. The former method requires
user-provided information about the key attributes assumed to
be unique. In this case, two records can be detected as duplicates
whenever they share the same value on the key attributes. The lat-
ter method relies on Magellan [24] to generate a set of similarity
features. However, ZeroER requires zero labeled examples where
it implements a Gaussian Mixture Model to learn the distribu-
tions that govern the feature vectors of matches and unmatches.
Away from duplicates, CleanLab [39] detects noisy labels via
exploiting the principles of confident learning to estimate the
joint distribution of noisy and true labels. To tackle the hetero-
geneity of data errors, Min-K and Max Entropy [2] implement
an ensemble of other non-learning methods to identify most of
the existing erroneous samples in a dataset. Specifically, Min-K
considers as errors those samples detected by at least 𝑘-methods.

Alternatively, Max Entropy introduces an entropy-based sam-
pling method to systematically select the order in which the
non-learning methods should be executed.

ML-supported Detectors: The ML-supported methods, exam-
ined in REIN, differ in how the features are generated and how the
required labeling budget is reduced. For example, the metadata-
driven error detection method [53] implements a metadata pro-
filer and a suite of non-learning error detectionmethods to extract
the features. In this case, each non-learningmethod is represented
by a binary feature, where the feature value is one, if the non-
learning method recognized this cell to be dirty. To reduce the
labeling budget, RAHA [33] adopts a semi-supervised algorithm
which clusters the samples by similarity and acquires labels on a
per-cluster basis, before propagating the acquired labels in each
cluster. Similarly, ED2 [38] extracts a set of attribute-level, tuple-
level, and dataset-level features which define the distribution
governing the dataset. Moreover, ED2 exploits active learning to
acquire labels for clean/erroneous samples that the classifier is
uncertain about. Finally, Picket [31] employs self-supervision to
train an error detection model without requiring user labels.

3.2 Data Repair Methods
In REIN, we examine 19 data repair methods which can be classi-
fied into twomain categories according to their intervention type,
namely (I) generic methods and (II) ML-oriented methods. The
former category comprises the methods which directly modify
the dirty dataset to generate a repaired version. Such modifica-
tions can be either removing the dirty cells or replacing them
with a set of generated repairs. They are generic in the sense that
they seek to improve the data quality, regardless of the down-
stream application, e.g., ML modeling, data visualization, or data
enrichment. Alternatively, the second category comprises meth-
ods which jointly optimize the data quality and the performance
of downstream ML models. In REIN, we also exploit the ground
truth of the dirty data to show the performance upper-bound.
Below, we introduce the various methods in each category.

Generic Repair Methods. To generate repair values, REIN exam-
ines several standard and ML-driven imputation methods. The
standard imputation methods utilize simple statistical measures,
such as mean, median, or mode to generate repairs for the numer-
ical values. For categorical values, we simply leverage the mode,
i.e., the most frequent value in the corresponding attribute, as
the repair value. Advanced imputation methods are those which
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build ML models to generate accurate repairs based on informa-
tion in the entire dataset. For numerical values, REIN examines
5 ML-based imputation methods including K-nearest neighbors
(KNN), Decision Tree (DT), Bayesian Ridge [42], missForest based
on random forest (RF) [51], and DataWig based on deep neural
networks [7]. For categorical values, we examine both of miss-
Forest and DataWig. In particular, missForest iteratively trains
an RF model on a set of clean samples (i.e., complete with no
outliers) in a first step, before predicting the missing values. Sim-
ilarly, DataWig implements deep learning modules combined
with neural architecture search and end-to-end optimization of
the imputation pipeline.

For mixed-type datasets, missForest and DataWig have two
modes of operation, namely separate mode and mixed mode. In
the former mode, each method is executed separately for each
data type, referred to as MISS-Sep. The latter mode involves exe-
cuting each method holistically on all data types, referred to as
MISS-Mix and DataWig-Mix, taking into account possible rela-
tions between different data types. Another generic method is
HoloClean [46] which precisely infers the repair values via holis-
tically employingmultiple cleaning signals to build a probabilistic
graph model. To repair pattern violations and inconsistencies,
OpenRefine [19] utilizes Google Refine Expression Language
(GREL) as its native language to transform existing data or to cre-
ate repair values. The last method in this category is BARAN [32]
which is a holistic configuration-free method for repairing all
error types. To this end, BARAN trains incrementally updatable
models which leverage the value, the vicinity, and the domain
contexts of data errors to propose correction candidates. To fur-
ther increase the training data, BARAN exploits external sources,
such as Wikipedia page revision history.

ML-oriented Repair Methods: The second category comprises
the methods designed to jointly optimize the cleaning and mod-
eling tasks. In other words, these methods focus on selecting the
optimal repair candidates with the objective of improving the
performance of specific predictive models. Accordingly, these
methods assume the availability of repair candidates from other
generic methods. For instance, BoostClean [25] treats the error
correction task as a statistical boosting problem where a set of
weak learners are composed into a strong learner. To generate the
weak learners, BoostClean iteratively selects a pair of detection
and repair methods, before applying them to the training set to
derive a new model. ActiveClean [26] is another ML-oriented
method, principally employed for models with convex loss func-
tions. It formulates the data cleaning task as a stochastic gradient
descent problem. Initially, it trains a model on a dirty training set,
where such a model is to be iteratively updated until reaching
global minima. In each iteration, ActiveClean samples a set of
records and then asks an oracle to clean them to shift the model
along the steepest gradient. A similar work is CPClean [22] which
incrementally cleans a training set until it is certain that no more
repairs can possibly change the model predictions.

4 DATA MODELING
In this section, we present a representative set of common ML
models utilized for assessing the performance of error detec-
tion and repair methods. Table 2 summarizes the algorithms and
whether they are used for classification (C), regression (R), or
unsupervised clustering (UC) tasks. As listed in the table, REIN
examines 12 classifiers, 11 regression models, six clustering algo-
rithms, and two AutoML algorithms. Such vital algorithms are

broadly applicable in various real-world application domains, e.g.,
cybersecurity systems, smart cities, healthcare, e-commerce, agri-
culture, and many more [49]. The rationale behind involving two
AutoML algorithms is to evaluate the performance of fully auto-
mated ML pipelines, consisting of data cleaning and model build-
ing. We are interested in checking whether such algorithms are
able to find the best possible combination of model architectures
and hyperparameters based on dirty or automatically-repaired
datasets. For most of these models, REIN exploits the Python im-
plementation of Scikit-learn [42] library for training and testing.
For hyperparameter tuning, REIN leverages a Bayesian-based
informed search method, referred to as Optuna [3]. However,
we did not use Optuna with the AutoML algorithms, since they
can automatically select the best hyperparameters. Moreover, we
did not use the internal processing pipelines of these algorithms,
since wemainly focus on the examined cleaners (listed in Table 1).

Table 2: Examined ML models

Algorithm C R Algorithm C R UC

Logistic Regression (Logit) ✓ Linear Regression ✓
Decision Tree (DT) ✓ ✓ Bayes Ridge Regressor (BRidge) ✓
Random Forest (RF) ✓ ✓ RANSAC ✓
Linear SVC ✓ ✓ Gaussian Mixture (GMM) ✓
SGD Classifier ✓ K-Means ✓
KNN ✓ ✓ Affinity Propagation (AP) ✓
AdaBoost (AdaB) ✓ ✓ Hierarchical Clustering (HC) ✓
Gaussian Naïve Bayes (GNB) ✓ OPTICS ✓
Multinomial NB ✓ BIRCH ✓
XgBoost (XGB) [9] ✓ ✓ Auto-Sklearn [17] ✓ ✓
Ridge ✓ ✓ TPOT [27] ✓ ✓
Multi-Layer Perception (MLP) ✓ ✓

In REIN, we evaluate the various error detection and repair
methods in five scenarios. Table 3 summarizes the different sce-
narios defined in terms of the data version used for training and
testing. In addition to the dirty and repaired versions of the data,
we utilize the ground truth version to estimate the performance
upper-bound. For instance, S1 involves training and testing the
ML models on either the dirty or the repaired versions of the
data. Conversely, S4 represents the optimal setting in which the
ground truth version of the data is employed for training and
testing the models. To capture the performance if optimal data
cleaning can be achieved in only one phase, REIN also considers
S3 and S4 in which the ground truth (which simulates optimal
data cleaning) is used for training and testing, respectively. Fi-
nally, S5 is mainly used with ML-oriented repair methods, which
generate ML models as their output.

Table 3: Evaluation scenarios

Train Test
Scenario Dirty Repaired Ground Truth Dirty Repaired Ground Truth

S1 ✓ ✓ ✓ ✓
S2 ✓ ✓ ✓
S3 ✓ ✓ ✓
S4 ✓ ✓
S5 ✓ ✓

In general, the obtained results in each scenario may vary
owing to ML randomness. Therefore, it is crucial to scrutinize
the results obtained in each scenario before drawing conclusions.
In this regard, REIN leverages A/B hypothesis testing to improve
our confidence in the interpretation of the obtained results. Gen-
erally, an A/B hypothesis test can be exploited to quantify how
likely it is to observe two data samples given the assumption that
the samples have the same distribution [14]. In REIN, the A/B
hypothesis tests can statistically predict whether an ML model
behaves similarly in different scenarios. An initial step in the test
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procedure is to clearly define the null hypothesis𝐻0 and the alter-
native hypothesis 𝐻𝑎 . In REIN, the null hypothesis 𝐻0 states that
an ML model has circa the same performance in two different sce-
narios, e.g., S1 and S4, regardless of the data version. Conversely,
the alternative hypothesis 𝐻𝑎 states that the ML model behaves
differently in S1 and S4. The statistical significance is estimated
in terms of the p-value, i.e., the probability that an observed differ-
ence between S1 and S4 could have occurred by random chance.
To estimate the p-value, we utilize the non-parametric Wilcoxon
signed-rank test [14]. The main advantage of such a test lies in
making no assumptions about the sampling distributions, e.g.,
being Gaussian. Specifically, we opted for the two-tailed version
of the test, since it is not a priori known whether the discrepancy
between the results of S1 and S4 will be in favor of S1 or S4. After
computing the p-value, we can compare it with the significance
level 𝛼 to estimate whether to reject the null hypothesis 𝐻0. In
particular, we can reject the null hypothesis 𝐻0 if p-value < 𝛼 .
Otherwise, we conclude that the obtained results in the compared
scenarios support the alternative hypothesis 𝐻𝑎 .

5 BENCHMARK DATA
In this section, we elaborate on the real-world datasets and how
to inject errors into them. To systematically select appropriate
datasets for running the benchmark, it is necessary to define
a set of requirements in light of the objectives of REIN. Such
objectives revolve around estimating the performance of each
detector/repair method separately without considering the sub-
sequent stages of the ML pipeline and examining the impact of
these methods on the performance of the downstream predictive
models in different scenarios. Accordingly, the datasets, involved
in REIN, have to fulfill the following conditions: (1) the existence
of a complete and clean ground truth version; (2) the existence of
associated predictive tasks, e.g., classification, regression, or clus-
tering; (3) the existence of different data types, e.g., categorical,
numerical, and/or text; and (4) the existence of different realistic
error profiles. In fact, we collected two datasets, i.e., Beers and
Citation, that satisfy these conditions. However, it is not straight-
forward to find other datasets satisfying our requirements.

To overcome such a challenge, we opted for injecting different
types of errors into a set of real-world datasets. Consequently, we
can predominantly control the experiments through obtaining
several versions of each dataset along with the ground truth. In
addition to the aforementioned requirements, we are also eager
to select datasets covering multiple application domains, e.g.,
business, medical, and industrial, where the data originated in
different domains usually have different characteristics. More-
over, we selected datasets of different sizes, ranging from a couple
of hundred samples to a couple of hundred thousands, to pre-
cisely test the efficiency of the various data cleaning methods.
Table 4 summarizes the examined datasets and the characteristics
of their ground truth.

To inject errors into the real-world datasets, REIN leverages
the BART tool [5] which provides a systematic control over the
amount of errors and how hard these errors are to be repaired.
To inject errors using BART, we use a set of denial constraints to
generate different attribute and class errors, such as rule violation,
outliers, nulls, duplicates, and mislabels. Furthermore, we also
employ a Python library, referred to as error generator, to generate
highly realistic errors [1]. Examples of such error are typos based
on keyboards, implicit missing values, Gaussian noise, and value
swapping. To automatically generate FD rules, REIN leans on the
FDX profiler [56] which formulates the task of learning functional

dependencies as a sparse regression problem. After generating
the FD rules, we manually convert them into denial constraints
to be used with BART and the rule-based error detection and
repair methods, e.g., HoloClean and NADEEF.

6 PERFORMANCE EVALUATION
In this section, we assess the effectiveness and efficiency of var-
ious error detection and repair methods. We first describe the
setup of our evaluations, before discussing the results and the
lessons learned throughout this study.

6.1 Experimental Setup
In REIN, we utilize several metrics to assess the quality of results
at different stages of a typical ML pipeline. In the error detection
phase, we leverage precision, recall, F1 score, IoU, and runtime
to evaluate the effectiveness and efficiency. In this context, the
precision 𝑃 denotes the fraction of relevant instances, e.g., actual
erroneous cells, among the detected instances, i.e. 𝑃 =

𝑡𝑝

𝑡𝑝+𝑓𝑝
where 𝑡𝑝 and 𝑓𝑝 are true positives and false positives, receptively.
The recall 𝑅 is defined as the fraction of erroneous instances that
are detected, i.e. 𝑅 =

𝑡𝑝

𝑡𝑝+𝑓𝑛 where 𝑓𝑛 denotes false negatives. The
F1 score denotes the harmonic mean of precision and recall where
𝐹1 = 2. 𝑃.𝑅

𝑃+𝑅 . Such metrics define the quality of detection relative
to the ground truth. Nevertheless, it is also significant to identify
the similarities between the detected erroneous cells obtained
by different detection methods. Hence, we adopt the Intersection
over Union (IoU) metric. Assume that 𝑁𝑎, 𝑁𝑏 are the detected
erroneous cells by detectors 𝑎 and 𝑏. Accordingly, the IoU metric
between detectors 𝑎 and𝑏 is computed as |𝑁𝑎∩𝑁𝑏 |

|𝑁𝑎 |+|𝑁𝑏 |− |𝑁𝑎∩𝑁𝑏 | . For
these computations, we consider only the true positives, since
the false positives may lead to misleading results. Finally, the
runtime is the time elapsed while traversing an entire dataset to
identify the erroneous cells.

In the error repair phase, we differentiate between the nu-
merical and the categorical attributes. For the former type, we
employ the root mean square error (RMSE) as a distance mea-
sure between the repaired values and their ground truth. In fact,
some error types, e.g., typos and outliers, turn the numerical
instances into categorical ones. To properly compute the RMSE
metric, we filtered out the transformed instances which have not
been detected and repaired. For the latter data type, we employ
precision, recall, and F1 measures. In this context, the precision
is defined as the fraction of correctly repaired data errors relative
to the number of repaired data errors. The recall is defined as the
fraction of correctly repaired data errors relative to the number
of data errors. We also report the runtime to quantify the time
elapsed while generating the repairs. In the ML modeling phase,
we utilize precision, recall, and F1 measures for the classification
models. For clustering methods which require the number of
clusters 𝑘 as an input, we utilize the Silhouette index to find a
well estimate for the value of 𝑘 . For the A/B statistical test, we
set the Type I error rate 𝛼 to 0.05. All experiments have been
repeated ten times with different random seeds that control the
train-test split, and the means of the ten runs are reported. We
run all the experiments on an Ubuntu 16.04 LTS machine with
32 2.60 GHz cores and 264 GB memory. Due to space constraints,
the results of many experiments have been omitted.

6.2 Error Detection
In this set of experiments, we assess the performance of several
error detectors applied to different datasets. For each dataset, the
number of examined detectors depends on the types of injected
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Table 4: Dataset characteristics

Dataset # Rows # Columns # Numerical # Categorical Error Rate Errors Domain ML Tasks

Beers [21] 2410 11 6 5 0.16 MVs, Rule Violations, Typos Business C
Citation [13] 5005 2 1 1 0.2 Duplicates, Mislabels Research C
Adult [23] 45223 15 7 8 0.58 Rule Violations, Outliers Social C
Breast Cancer [15] 700 12 12 0 0.08 MVs, Typos, Outliers Healthcare C
Smart Factory [8] 23645 19 19 0 0.153 MVs, Outliers Manufacturing C
Nasa [52] 1504 6 6 0 0.08 MVs, Outliers Manufacturing R
Bikes [16] 17378 16 16 0 0.1 Rule Violations, outliers Business R
Soil Moisture [48] 679 129 129 0 0.01 MVs, Outliers Agriculture R
3D Printer [40] 50 12 10 2 0.05 Duplicates, MVs, Implicit MVs Manufacturing R
Mercedes [11] 4210 378 370 8 0.05 Outliers, MVs, Implicit MVs Manufacturing R
Water [6] 527 38 38 0 0.14 Outliers, Implicit MVs Manufacturing UC
HAR [4] 70000 4 3 1 0.13 Outliers, MVs Wearables UC
Power [18] 1456 24 24 0 0.037 Typos, MVs, Implicit MVs Energy UC
Soccer [35] 180228 44 40 4 0.27 Rule violations, outliers, MVs, Implicit MVS Business –

errors. Moreover, the detectors which fail to detect any cells are
deliberately excluded from the figures. Figure 2a depicts the num-
ber of detected erroneous cells (blue bars) and the number of true
positives (green bar) in the Beers dataset using 14 error detection
methods. The number of false positives is indicated by turning
the color of the blue bars into red. The red dashed line represents
the actual number of erroneous cells in the dataset. As depicted
in the figure, most ML-based and ensemble methods, including
ED2, RAHA, Min-k (Min), and Max-entropy (Max), outperform
the other methods where their F1 score is between 0.92 and 0.99.
As a result of converting the numerical attributes to categorical
ones, several detectors, e.g., NADEEF and KATARA, erroneously
flagged all clean numerical values in these converted attributes
as noisy cells. The low precision of such methods (ranging from
0.08 to 0.16) typically has negative consequences on the repair
phase (cf. Section 6.3).

Figure 2b demonstrates the IoU metric of detectors applied to
the Beers dataset. Obviously, theML-based and ensemblemethods
have high similarity (at least IoU of 98%). Furthermore, the figure
shows a relatively high correlation (IoU of 87%) between the de-
tections of NADEEF (F1 of 0.74) and Metadata-driven (Meta, F1 of
0.48) methods. Accordingly, we can deduce that most detections
of the Metadata-driven method, i.e., 2417 out of 2570 detected
cells, are rule and pattern violations. Similarly, KATARA (F1 of
0.12) and FAHES (F1 of 0.35) have high similarity (IoU of 88%)
since both of them employ a syntactic pattern detection method.
Figure 2c depicts the average runtime (on the logarithmic scale)
of the detectors, where the red bars indicate that the runtime
exceeds one minute. As the figure depicts, the ML-based methods
require long execution time due to searching for the optimal
configurations, featurization, and training the classifiers. For in-
stance, Max Entropy requires much less time (at least by 98%)
than ED2 while detecting the same erroneous cells (cf. Figure 2b).

Figure 2d depicts the number of detected cells in the Citation
dataset using seven detectors. Such a dataset contains duplicates
and mislabeled samples. The figure shows that the key colli-
sion method (DuplD) outperforms all other methods, where it
achieved an average F1 score of 0.86. Similarly, the ensemble
methods (i.e., Min and Max) achieved better performance (F1
score between 0.74 and 0.78) than Picket (ML-based detection
method, average F1 of 0.18) due to the low recall of Picket which
relies on self-supervision to train its classifier. Moreover, Clean-
Lab achieved a low F1 score of 0.19 where it captured only the
mislabeled cells in the dataset while ignored the duplicates. Fig-
ure 2e depicts a strong IoU relationship among the detections of

key collision, ZeroER, Min-K, and Max Entropy. However, Ze-
roER requires much more time (by circa two orders of magnitude)
to generate its detections.

For the Adult dataset, Figure 2f depicts the number of detected
cells using 11 detectors. Such a dataset suffers from rule viola-
tions and outliers, with a large error rate. In this case, both of
RAHA and ED2 outperform all other methods (average F1 score
of 0.8 and 0.78, respectively). According to their IoU values, the
detections obtained by HoloClean, NADEEF, and Min-k exhibit
high correlation where these methods captured most of the rule
violations only. Conversely, dBoost captured most of the outliers
while failed to identify the rule violations. Despite being effective
while detecting erroneous cells in this dataset, ED2 and RAHA
are less efficient where they required, on average, 35 minutes
to find the erroneous cells compared to 2.3 and 0.73 minutes
for dBoost and Min-k, respectively. The Smart Factory dataset
represents an example of relatively large datasets suffering from
explicit missing values and outliers with a moderate error rate.
Figure 2h depicts the number of detected cells in the Smart Fac-
tory dataset using eight detectors. In this case, Min-k outperforms
(average F1 score of 0.75) other detectors while requiring much
less time than other detectors (cf. Figure 2j). RAHA and Meta
have a relatively high correlation with Min-k, as depicted in Fig-
ure 2i. Furthermore, Figure 2h shows that KATARA generated
many false positives, which occurs since it failed to correctly
interpret the data semantics.

For the datasets with regression tasks, Figures 2k-2o show the
detection accuracy and runtime of various detectors. For instance,
Figure 2k depicts the number of detected cells in the Nasa dataset
using 12 detectors. Such a dataset represent an example of small
datasets suffering from explicit missing values and outliers with
a small error rate. As the figure depicts, Max Entropy and dBoost
outperform (average F1 score of 0.85) all other methods. Both
detectors nearly generated the same detections where their IoU
metric is 0.99, as illustrated in Figure 2l. Despite detecting mostly
all erroneous cells, the ML-based methods have F1 score between
0.27 and 0.43 due to the large number of false positives. As the
dataset is small, most detectors generated their detections in less
than a minute, as depicted in Figure 2m. For the Bikes dataset, it
has rule violations and outliers with a small error rate. Figure 2n
depicts the number of detected cells in the Bikes dataset using
11 detectors. RAHA and Min-k outperform other detectors with
average F1 scores of 0.72 and 0.75, respectively. The figure shows
that KATARA and NADEEF (average F1 score of 0.25 and 0.4,
respectively) have poor performance due to generating many
false positives. Similar to the Nasa dataset, dBoost and Max En-
tropy have a high correlation. Figure 2o shows that Min-k is more
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Figure 2: Detection results (In the accuracy plots, the blue bars are subdivided into red and green regions to show the false
positives and true positives, respectively)

efficient than RAHA, where it required, on average, 9 seconds to
generate the detections compared to 6.6 minutes for RAHA.

Figures 2p-2t depict the performance of various detectors us-
ing the datasets associated with clustering tasks. For theWater
dataset, it suffers from implicit missing values and outliers with
a small error rate. Figure 2p shows that Max Entropy and RAHA
achieved the highest accuracy with average F1 scores of 0.74 and
0.76, respectively. The detections obtained by both detectors are
highly correlated. However, Max Entropy required much less
time (average runtime of 0.09 seconds) to generate its detections
compared to RAHA (average runtime of 15.8 seconds with a
standard deviation of 10.4) and ED2 (average runtime of 17.9
minutes). RAHA has typically high variance because it consumes
a relatively long time in the first iteration to create the cleaning
strategies utilized to generate the training features. For the Power
dataset, NADEEF and Max Entropy outperform other detectors
with average F1 scores of 0.9 and 0.84, respectively, as shown in

Figure 2q. Clearly, both of NADEEF and MVD have high preci-
sion. However, each detector captured only the relevant errors.
In other words, NADEEF detected 1088 pattern violations (corre-
sponding to the typos and implicit missing values), while MVD
found only the explicit missing values. For the efficiency, Max
Entropy and NADEEF consumed circa the same time (average
runtime of 0.05 seconds), while ED2 required, on average, 680
seconds to generate the detections. For the HAR dataset, Figure 2r
shows that RAHA achieved the highest accuracy, with an aver-
age F1 score of 0.89, at the expense of consuming 20.5 minutes
(standard deviation of 20 minutes) to generate its detections (cf.
Figure 2t). Figure 2s demonstrates that MVD, HoloClean, and
Min-K detected the same erroneous cells with missing values.

6.2.1 Detection Robustness. In this section, we examine the
robustness of various error detectors in terms of their accuracy.
To this end, we implemented two sets of experiments, including:
(1) varying the error rate of a dataset; and (2) varying the outlier
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degree, defined as the number of standard deviations away from
the mean. In the former set of experiments, we injected outliers
and missing values where the outlier degree is set to 4. In the out-
lier degree experiment, we injected outliers with an error rate of
30%. Figure 3a compares the robustness of seven detectors while
cleaning the Adult dataset at different error rates. Clearly, the F1
score of all detectors increases linearly at low error rates (i.e., up
to 0.02). In this range, several detectors (e.g., ED2, Max Entropy,
and Min-k) have a large slope, which implies a high detection
accuracy. When the error rate is further increased, the accuracy
of most detectors, except RAHA, is gradually reduced. Figure 3b
shows a similar experiment on the Power dataset. As the figure
depicts, ED2 achieved a higher accuracy, at low error rates, than
all other models. For RAHA, its performance has been improved,
when the error rate is increased. Figure 3c compares the per-
formance of ten detectors when increasing the outlier degree
injected into the Smart Factory dataset. The figure shows that all
detectors behave approximately the samewhen the outlier degree
is relatively small (i.e., below two). However, the performance of
RAHA, ED2, Min-k, dBoost, and Meta is broadly improved when
the value of the outlier degree goes beyond two.

6.2.2 Scalability Analysis. In this section, we evaluate the effi-
ciency of several error detectors when dealing with large datasets.
To this end, we ran several experiments to detect errors in dif-
ferent data fractions. Figures 3d and 3e compares the accuracy
and efficiency of ten detectors for different factions of the Soccer
dataset. For this dataset, Figure 3d shows that ED2, NADEEF,
and RAHA achieved the highest F1 score (i.e., 0.83, 0.93, and 0.98,
respectively). Furthermore, the figure illustrates that some detec-
tors work only with small data fractions. For instance, RAHA,
ED2 stopped working at a data fraction of 50%, while HoloClean
is terminated with 90% of the data. Figure 3e shows the com-
parison in terms of the average runtime (in logarithmic scale).
Obviously, RAHA, ED2 and KATARA required much more time
(average runtime of 3.5, 10.1, 13.8 hours, respectively) than other
detectors. In contrast to ED2 and RAHA, KATARA managed to
detect errors for all data fractions.

6.3 Data Repair
In this section, we introduce the results of the repair methods
while being used to generate repair candidates based on the de-
tections obtained from various error detectors. We divide the
experiments according to the data type in each dataset. More-
over, we introduce the results of the ML-oriented repair methods,
whose outputs are ML models rather than repaired datasets.

6.3.1 Categorical Attributes. Figure 4 shows the repair results
in terms of the repair accuracy and runtime for two datasets
which include categorical attributes. For instance, Figure 4a de-
lineates the repair accuracy, in terms of the precision and recall,
when cleaning the Beers dataset. The figure shows that the de-
tections obtained by several detectors, including RAHA, ED2,
Min-k, Max Entropy, HoloClean, and NADEEF, can result in a
high repair accuracy (average F1 score of 0.99) if being repaired
by an optimal repair method (simulated by GT). The high per-
formance of HoloClean-GT is achieved, despite the low recall
of HoloClean as shown in Figure 2a, since HoloClean detected
248 out of 254 actual erroneous categorical cells. For this dataset,
BARAN achieved the highest accuracy (average repair F1 score
of 0.98) when generating repair candidates for the detections
obtained by RAHA, ED2, and Max Entropy. Due to the large num-
ber of false negatives (127 cells out of 254 erroneous categorical

cells) obtained by KATARA (cf. Figure 2a), the maximum repair
F1 score, when repaired using the ground truth, is limited to only
0.66. Figure 4b compares the runtime of eight repair methods. The
blue band enveloping the boxes represents the standard deviation
of the runtime at a given point. Clearly, BARAN consumed much
more time (an average runtime of 4.4 minutes with a standard
deviation of 1.5 minutes) than all other detectors.

Figure 4c shows the repair accuracy of various detector/repair
combinations adopted to clean the Breast Cancer dataset. As the
figure illustrates, the detections obtained by Max Entropy led
to a moderate accuracy, when MissForest (F1 score of 0.63) and
BARAN (F1 score of 0.6) are utilized. Furthermore, the figure
shows that KATARA achieved a repair F1 score of one when the
detections are repaired using the ground truth. In fact, KATARA
generated many false positives (6,843 cells) and few false nega-
tives (86 cells, all numerical values). Accordingly, we can deduce
that in the presence of highly-effective repair methods, the de-
tection false negatives are more harmful to the repair accuracy
than the detection false positives. Figure 4d depicts that Holo-
Clean and BARAN are the most time-consuming repair methods
(average runtime of 45.7 and 53.8 and seconds, respectively).

6.3.2 Numerical Attributes. Figure 5 depicts the repair results
of the numerical attributes in terms of the RMSE values and the
runtime. For instance, Figure 5a compares the performance of
eight repair methods while cleaning the Smart Factory dataset.
Each repair method comprises a group of bars representing the
different detection methods. The red dashed line denotes the
RMSE value of the dirty version of the dataset. The Figure depicts
that the detections of RAHA and dBoost achieved the highest
performance (average RMSE of 0.93 and 0.82 for RAHA and
dBoost, respectively) for different repair methods. Furthermore,
the figure depicts that GT may generate repaired versions with
RMSE comparable to the dirty version (cf. the bars of FAHES,
Meta, and NADEEF in the GT group). Such a repair performance
typically occurs due to the low accuracy of these detections.
Accordingly, we can conclude that without an accurate error
detection process, the highly-effective repairmethods can achieve
poor results. Figure 5c shows that the detections of ED2 and
RAHA, in the Breast Cancer dataset, achieved the highest repair
accuracy over mostly all repaired methods.

For the Bikes dataset, Figure 5d shows that most cleaning
strategies generate repaired versions relatively better than the
dirty data. However, the repaired versions, resulted from the de-
tections of FAHES, HoloClean, and KATARA, have higher RMSE
values than the dirty version (cf. the bars above the dashed line
for standard and ML-based imputation methods). For this dataset,
BARAN required much more time (an average runtime of 58.4
± 40.2 minutes) than all other methods. Figure 5e compares the
accuracy of ten repair methods while cleaning the Water dataset.
The figure shows that all repaired versions have either similar or
better performance than the dirty version. Obviously, RAHA and
Max Entropy achieved the highest accuracy over all repair meth-
ods (an average RMSE of 0.7 and 0.65, respectively). In terms
of runtime, Figure 5f shows that HoloClean is the most time-
consuming method with an average runtime of 5.2 ± 4 minutes.

6.3.3 ML-Oriented RepairMethods. In this section, we present
the results of the ML-oriented methods, including ActiveClean,
CPClean, and BoostClean. Figure 6 compares the performance of
these methods in terms of the modeling accuracy. In particular,
Figure 6a shows the F1 score of the generated models in scenarios
S1, S4, and S5 for the Adult dataset. The figure shows that the
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Figure 3: Robustness and scalability results of the error detectors
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Figure 4: Repair results considering only the categorical attributes (In the accuracy figures, each bubble represents a
different cleaning strategy and the size of the bubbles denotes the F1 score. To highlight the most effective cleaning
strategies, we colored only the bubbles whose F1 score is above 0.6)
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Figure 5: Repair results considering only the numerical attributes

datasets, repaired using the three cleaning methods, slightly lag
behind the ground truth versions (on average by 15%, 0.13%, and
0.13%, for ActiveClean, CPClean, and BoostClean, respectively).
Furthermore, the results of CPClean and BoostClean in S1 are
approximately the same as in S5. The reason behind such a result
lies in the relatively comparable accuracy of the dirty and the
repaired versions, as shown in Figure 5. For the Breast Cancer
dataset, Figure 6b depicts that the models generated by Active-
Clean in S1 broadly suffer from low accuracy, where the average
F1 score in S4 is higher than in S1 by circa 88%. This result mostly
occurred due to the small size of the dataset and the relatively

low detection accuracy of all detectors (i.e., the highest F1 score
of 0.75 by Max Entropy). For CPClean and BoostClean, the results
are close to each other in the three scenarios.

6.4 Modeling Accuracy
In this section, we present the results of modeling the various
datasets in different scenarios. Figure 7 demonstrates the accu-
racy of different classification, regression, and clustering models
trained on different data versions. For the Beers dataset, Figure 7a
shows the average F1 score of six classifiers in scenarios S1 and S4.
As the figure depicts, the performance of all classifiers changes
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Figure 6: Accuracy of ML-oriented repair methods

according to the quality of the repaired data. For example, the
MLP classifier achieved an average F1 score of 0.732 in S4, while
the accuracy in S1 ranges from 0.368 to 0.727. Figure 7b clari-
fies these results via comparing the performance of MLP models
trained on different versions, i.e., dirty (D0), ground truth, and
repaired, of the Beers dataset in S1 (in blue) and S4 (in green).
Obviously, the blue and green regions mostly overlap with each
other. The only exception occurs with the combination X3, rep-
resenting Max Entropy and standard imputation. Such a low
accuracy, repeated with several classifiers, is usually caused by
the low-quality repairs generated by different standard imputa-
tion methods. In this figure, the results of the A/B statistical test
are delineated in the form of blue filled/empty square markers. In
this context, a filled marker denotes that the null hypothesis 𝐻0
can be rejected (i.e., the two MLP models in S1 and S4 are differ-
ent), whereas an empty marker means failing to reject 𝐻0. Thus,
we can confirm that the performance difference of the models
in S1 and S4 will remain, if we run the experiments for more
than ten times. Figure 7c compares the results of ten classifiers
trained on different versions of the adult dataset. In this figure,
the distribution of the results in S1 enables us to identify the
ML models robust to data quality problems. For instance, the
results of DT in S1 range from 0.17 to 0.99, whereas the results of
Ridge range from 0.74 to 0.78. Figure 7d shows the performance
of SVC when trained on different versions of the Adult dataset.
For most data versions, the accuracy of SVC is comparable in
both scenarios. Despite achieving high detection accuracy, the
detections of ED2 led to quality problems in most of its repaired
versions, e.g., E1, E3, E10, E15. This behavior occurs due to the
large number of false positives (118,741 cells) generated by ED2
(cf. Figure 2f). Similarly, Figures 7e and 7f depict the modeling
accuracy for different versions of the Breast Cancer dataset. For
this dataset, DT performed well with a relatively tight range of
F1 scores from 0.65 to 0.94, compared to GNB whose F1 scores
range from 0.15 to 0.85. Figure 7f depicts that the performance
of XGBoost is slightly better in S4 than in S1 for most repaired
versions of the Breast Cancer dataset.

For the Citation dataset, which includes duplicates and misla-
bels, Figure 7g demonstrates the F1 score of several classification
models in the scenarios S1 and S4. As it can be seen in the top right
corner of the figure, most classifiers yield similar performance
as the ground truth when applying the “Delete” strategy. Other
cleaning strategies which rely on ML-based imputation, e.g., M6,
M7, M9, X7, X6, and X9, cause the predictive performance to be
substantially deteriorated (cf. Figure 7h). Unlike other classifiers,
XGBoost exhibits poor performance over the dirty and the most
repaired data versions (F1 score ra nges from 0.05 to 0.8 and has
a high density under the value of 0.26, as depicted in Figure 7g).
To further understand the impact of mislabels, we carried out
experiments on the Adult and Breast Cancer datasets after adding
noise to the labels (i.e., flipping some binary labels). The results of

such experiments show that several MLmodels, e.g., MLP, RF, DT,
trained on dirty versions have slightly worse performance than
the same models trained on the ground truth (for RF, an average
F1 score of 0.9 for the dirty dataset and 0.93 for the ground truth).

Figures 7j-7o illustrate the performance of various regression
models trained on different datasets. As depicted in Figures 7j,
XGB achieved the highest accuracy in S4 (RMSE of 1.54). However,
its performance broadly depends on the quality of the repairs
(cf. the RMSE values in S1 which range from 1.78 to 35.9). Con-
versely, DT and RF have tighter distribution of RMSE values in
S1. Figure 7k demonstrates that DT has approximately the same
predictive performance over the most repaired data versions. The
figures also some cleaning strategies, e.g., X2, X7, X8, N11, and
K11, which achieve similar performance as the ground truth. For
the Soil Moisture dataset, Figure 7l depicts that KNN outperforms
other models with a relatively tight distribution of the RMSE val-
ues in S1. For this dataset, the detections of RAHA repaired using
the ground truth led to a comparable RMSE as that obtained in S4,
as depicted in Figure 7m. In Figures 7n and 7o, we demonstrate
the performance of RANSAC and Bayesian Ridge in scenario S2
and S3 (cf. Table 3). Obviously, RANSAC and Bayesian Ridge per-
form in S2 much better than in S3. Since this result appeared in
all other datasets, we can deduce that models trained on dirty or
relatively low-quality repaired data may perform well whenever
they are tested/served using high-quality data.

Aside from regression, the accuracy of several clustering meth-
ods also have been measured in terms of the silhouette index, as
illustrated in Figures 7p-7t. The results showed that some cluster-
ing methods, e.g., Optics, GMM, and HC, yielded a comparable
performance in S1 and in S4, or even better in S1 for several
repaired versions, as depicted in Figures 7p and 7r. For instance,
Figure 7q compares the performance of Birch when clustering dif-
ferent versions of the Water dataset. In general, Birch performed
in S4 better than in S1. However, there exist several repaired
methods which exhibit better clustering performance (on aver-
age by 16%, 18%, and 17% for R1, R7, and R9, respectively) than
the ground truth. Figure 7s shows similar results for K-Means
while clustering the power dataset. Finally, Figure 7t compares
the performance of five clustering methods trained on the HAR
dataset. The figure shows that all models have a relatively tight
distribution in S1, which implies non-sensitivity to the quality
of the repaired versions. Several repaired versions, generated
using the detections of RAHA (e.g., R1, R2, and R6), led to similar
performance as the ground truth.

6.5 Lessons Learned
Main Findings: In this section, we highlight the main findings

and lessons learned throughout this study. Through extensive
experiments, REIN proved that evaluating the error detection and
repair methods in isolation from the downstream applications,
e.g., predictive tasks, can be broadly misleading. For instance, Fig-
ures 2a, 2h, and 2n show that KATARA suffers from many false
positives. Moreover, the quality of repairs generated for the de-
tections of KATARA is sometimes worse than the dirty versions
of the datasets (cf. Figure 5d). Nevertheless, Figures 7d, 7g, 7i, and
7k clearly depict that the ML models trained on the KATARA-
based repaired data versions have a comparable predictive perfor-
mance to the other models. Similar conclusions can also be drawn
for other detectors, such as FAHES, NADEEF, and HoloClean.
In fact, most error detection and repair methods are typically
evaluated using their performance relative to the ground truth
[20, 32, 33, 38, 46]. Accordingly, the finding above represents a
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Figure 7: Accuracy of ML Models trained on different data versions in different scenarios (F1 score, RMSE, and Silhouette
metric for datasets with associated classification, regression, and clustering tasks, respectively)

major result which guides researchers and developers on how
they can effectively evaluate their data cleaning methods.

Another interesting finding is that classification models are
more robust to attribute errors than regression models and clus-
tering methods. Through comparing the performance of different
models in Figure 7, it is clear that the differences between S1 (blue
regions) and S4 (green regions) for almost all classifiers are rela-
tively small. Conversely, regression models and clustering meth-
ods remarkably perform in S4 better than in S1. Accordingly, data
cleaning is a necessary component in the pipelines of regression
and clustering applications. Furthermore, classification applica-
tions may not need to implement a sophisticated data cleaning
method. Simple cleaning methods can supply the classification
models with the necessary quality level that is needed to train
the models. At the same time, simple error detection and repair
methods do not require excessive time, hence we can broadly
accelerate the data preparation process. In the presence of class
errors, some classifiers exhibited relatively poor performance.
Hence, automated mislabels detection methods are necessary to

produce accurate predictions. For the examined AutoML algo-
rithms, i.e., TPOT and Auto-Sklearn, the results showed that they
do not always produce the most accurate models. For example, in
case of the Breast Cancer dataset, the models generated by TPOT
with X13 and X15 have F1 scores of 0.75 and 0.6, respectively.
Compared to TPOT with B15 and X2, which have F1 scores of
circa 0.98 and 0.99, respectively. Thus, these algorithms may fail
to generate accurate models in case of improper data cleaning.

Error Detectors: Regarding the error detectionmethods, it is ob-
vious that ML-based and ensemble methods, in most cases, have
a higher detection accuracy than the other non-learning methods,
as illustrated in Figure 2. However, the results also showed that
most detectors lack consistency over different datasets, i.e., their
performance varies from one dataset to another. For instance,
Figure 2a shows that ED2 detected all errors with high precision
in the Beers dataset. Nevertheless, it suffered from false positives
and false negatives in other datasets, such as Adult, Nasa, and
HAR (cf. Figures 2f, 2k, and 2r). Similarly, NADEEF performed
poorly (an average F1 score of 0.12) in case of the Nasa dataset,
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whereas it achieved a reasonable performance (an average F1
score of 0.91) in case of the Power dataset. Other shortcomings
of ML-based detectors are as follows: (1) They are not able to
recognize the error type, i.e., they only provide a binary decision
for each cell of whether it is erroneous. This behavior may make
it complex to select a well-suited data repair tool. (2) They suffer
from poor scalability (cf. results in Figures 3d-3e). (3) They re-
quire users intervention to label data. Accordingly, it is necessary
to exert more efforts to advance the ML-based detectors for the
sake of resolving the above shortcomings.

The results illustrated that the performance of rule-based er-
ror detectors broadly relies on the number and the quality of
the user-provided rules/constraints. For instance, the F1 score
of HoloClean, in case of the Adult dataset, is dropped from 0.51
to 0.12, when the number of provided rules is reduced from 17
to seven. Accordingly, it is crucial to integrate an automated
rules/constraints generator with such detectors to improve their
performance. In this context, we highlight that configuration-free
methods are generally simple and easy to be employed, but they
usually need long times to find the most suitable configurations,
e.g., dBoost and RAHA (cf. Figures 2c, 2j, and 2t). It is worth-
while mentioning that the current implementation of RAHA,
ED2, and Meta do not work in the presence of duplicates in the
dirty datasets. This problem mainly occurs since the dirty and
ground truth versions of the dataset become of different lengths.
In this case, these detectors are not able to use the ground truth
to simulate a human annotator, i.e., for labeling the dirty cells.
Picket represents an exception to this fact since it relies on self-
supervision. Therefore, it does not mandate user-provided labels.
However, the results showed that Picket is only suitable for small
datasets, where it does not scale well due to the complexity of
self-supervision. For larger datasets, e.g.,Adult and Smart Factory,
Picket was terminated since it caused memory faults.

Repair Methods: For a better repair experience, it is found that
the detection precision has a relatively higher impact on the
repair quality than the detection recall (cf. Figures 2a and 2n).
The reason behind such a superiority is to avoid false positives
which may drive the adopted repair method to either introduce
new erroneous cells or remove all the detected cells, causing
the repaired dataset to be entirely out of sync with the ground
truth. However, an effective repair method can even avoid the
negative impacts of false positives in the detection phase. For
instance, NADEEF, in the case of the Beers dataset, generated
many false positives. Nevertheless, these false positives have circa
no impact when the detections are repaired using GT (simulates
a highly-effective repair method). In this case, false negatives in
the detection phase become more harmful than false positives,
in the presence of highly-effective repair methods.

For ML-oriented repair methods, we noticed that CPClean
and BoostClean are hardly applicable to datasets associated with
multi-class classification tasks. The underlying reason is that
the methods divide each dirty dataset into batches, and each
batch has to include samples from all classes. However, obtaining
samples from each class is not always possible when there are
several minority classes. For the datasets which have a binary
classification problem, if the labels comprise erroneous cells, CP-
Clean and BoostClean may not work due to introducing new
values in the labels, turning the problem into a multi-class clas-
sification. For ActiveClean, it starts with partitioning the dirty
dataset to obtain a clean fraction (i.e., data fraction without any
errors) for warming up. Such a partition needs to represent all
possible classes in the dataset. Therefore, ActiveClean searches

for a partition that meets this condition. If it does not find such a
partition, it returns an exception. Such a problem may happen
in the following situations: (1) a dataset has too many classes
with multiple minor classes (e.g., Beers) and (2) there exist no
sufficient clean cells in the dataset.

Actionable Suggestions: Based on the results obtained in REIN,
we provide the following suggestions while designing or selecting
data cleaning tools: (1) tailor the design and evaluation of data
cleaning methods to the planned downstream applications to
properly select a well-suited cleaning method; (2) adopt simple
cleaning strategies (non-learning detectors and generic repair
methods) with classification tasks to combat attribute errors
and more advanced cleaners (ML-based) with regression and
clustering tasks; (3) exploit advanced techniques to combat class
errors, e.g., CleanLab, data valuation, label smoothing, and noise-
aware learning [43, 50]; (4) employ automated tools, e.g., FDX
profiler and Metanome [41], to extract integrity constraints and
functional dependency rules to properly use cleaning tools, such
as NADEEF and HoloClean, with minimal user involvement; (5)
adopt duplicates detection tools, e.g., ZeroER, record linkage and
data hashing, as early as possible, in the ML pipeline, to prevent
data leakage between the training, the validation, and test sets;
and (6) avoid ML-based error detectors, e.g., ED2, RAHA, and
Picket, while preparing large volumes of data (i.e., over 50k rows,
as shown in Figure 3d) due to their poor scalability.
7 RELATEDWORK
In fact, there exist few studies which survey or compare the
already-existing data cleaning methods [2, 28, 29, 47]. Lee et al.
[28] introduce a survey of five data cleaning methods and pro-
pose several research directions, such as integrating data cleaning
methods with visual interface and the usage of high-performance
memory management hardware solutions. Similarly, Ridzuan et
al. [47] presents a review of data cleaning methods together
with their challenges for dealing with big data. CleanML [29]
introduces a relational database schema designed to organize the
experimental results of investigating the impact of data cleaning
on ML classification tasks. Since it does not consider the ground
truth of each dataset, CleanML overlooks comparing the per-
formance of ML models when trained using ground truth and
repaired datasets. Moreover, CleanML limits the evaluations to
simple classification tasks, while ignoring other ML tasks such
as regression, clustering, and AutoML algorithms. In addition,
CleanML does not consider the holistic, semi-supervised, or ML-
oriented error detection and repair methods. In REIN, we tackle
these shortcomings to generalize our findings to properly guide
practitioners and data scientists while dealing with data cleaning
problems in tabular data.

8 CONCLUSION
In this study, we introduced a benchmark framework, called
REIN, to properly evaluate the error detection and repair meth-
ods. REIN enables ML engineers and practitioners to select the
most well-suited data cleaning methods in ML pipelines. We
carried out an extensive experimental study which involves 19
detectors, 19 repair methods, 33 ML models, and 14 datasets.
The obtained results revealed that evaluating the data cleaning
method in isolation from the downstream applications can be
broadly misleading.
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