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ABSTRACT
Constraint discovery is a fundamental task in data profiling,

which involves identifying the dependencies that are satisfied

by a dataset. As published datasets are increasingly dynamic, a

number of researchers have begun to investigate the problem

of dependencies’ discovery in dynamic datasets. Proposals this

far in this area can be viewed as schema-based in the sense

that they model and explore the solution space using a lattice

built on the basis of the attributes (columns) of the dataset. It

is recognized that proposals that belong to this class, like their

static counterpart, tend to perform well for datasets with a large

number of tuples but a small number of attributes. The second

class of proposals that have been examined for static datasets

(but not in dynamic settings) is data-driven and is known to

perform well for datasets with a large number of attributes and

a small number of tuples. The main bottleneck of this class of

solutions is the generation of agree-sets, which involves pairwise

comparison of the tuples in the dataset.

We present in this paper DynASt , a system for the efficient

maintenance of agree-sets in dynamic datasets. We investigate

the performance ofDynASt and its scalability in terms of the num-

ber of tuples and the number of attributes of the target dataset.

We also show that it outperforms existing (static and dynamic)

state-of-the-art solutions for datasets with a large number of

attributes.

1 INTRODUCTION
Data dependencies (data constraints) are key ingredients for

a range of data management functionalities including schema

normalization [11], query optimization [12], data cleaning [10]

and data integration [7, 25]. Because of this, a large body of work

was dedicated to the discovery of data dependencies of different

expressiveness in the last two decades, ranging from functional

dependencies (FDs), candidate keys, inclusion dependencies to

more expressive dependencies such as denial constraints.

While identifying the dependencies that hold for static datasets

has been thoroughly investigated, discovering the dependencies

that hold over time for dynamic datasets is increasingly needed

in practice with only a few proposals dedicated to the subject

so far [8, 26, 30]. Indeed, checking the validity of dependencies

over time provides in-depth information, e.g., in data exploration

scenarios, to understand the complex semantic relationships be-

tween attributes and their evolution over time. Such an assess-

ment has also practical benefits and applications. It can be used

to identify dependencies that are resilient over time, thus assist-

ing the user in determining which dependencies are reliable and

which are not. This is particularly the case when the system
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supports approximate dependencies, which are accompanied by

a confidence/error. Also, sudden changes in previously reliable

dependencies can flag up data quality problems, i.e., erroneous

updates. This is particularly relevant in the scenario where the

dataset under analysis is continuously updated using information

extraction pipelines fed by uncertain and changing data sources.

Furthermore, in such contexts, dynamic dependency discovery

can be used to analyse the impact of adding or removing a new

data source in the information extraction pipeline. For example,

if the addition of a new source invalidates previously valid and

reliable dependencies, this may mean that the new source suffers

from data quality problems. On the other hand, if the removal of a

data source produces new data dependencies, which the domain

expert had identified as invalid, it may mean that the removal of

the data source in question has an impact on the representative-

ness (completeness) of the dataset produced by the information

extraction pipeline.

Motivated by this, several researchers have begun to investi-

gate incremental dependency discovery in dynamic datasets. For

example, Wang et al. [30] proposed a solution to maintain FDs

when tuples are deleted from the target relation. Caruccio et al.
[8], on the other hand, have explored the problem of maintaining

FDs when tuples are inserted in the target relation. The proposal

by Schirmer et al. [26] is the most complete in the sense that it

maintains FDs under both tuple deletion and insertion.

The above proposals are schema-driven: they model the search

space of FDs using a lattice whose nodes represent the attribute

sets of the relational schema, andwhose edges specify the contain-

ment relationships between the attribute sets. Different strategies

are then used to explore such a space. For example, Wang et al.
[30] has shown how FDs can be maintained in the case of tuple

suppression by traversing the lattice in an ascending or descend-

ing manner. Schirmer [26], on the other hand, limits the search

to the middle part of the lattice, where non-FDs may become

minimal FDs following the removal of tuples, and minimal FDs

may become Non-FDs following the insertion of tuples. It is well

recognized that the time complexity of schema-driven depen-

dency discovery algorithms depends mainly on the size of the

lattice, which is predicated by the number of attributes of the

target relation. Because of this, such algorithms tend to perform

well for relations that have a large number of tuples but with a

small number of attributes (see Papenbrock et al. [23]).
The second class of dependency discovery algorithms, which

complements schema-driven algorithms, are data-driven. This

class of algorithms proceeds in two steps. In the first step, tuples

in a dataset are compared in pairs to identify attributes on which

they agree, which are called agree-sets. To illustrate this, consider

the Employee relation illustrated in Table 1 providing informa-

tion about employees, who are characterized by their first name

𝐹𝑁 , last name 𝐿𝑁 , position 𝑃 and salary 𝑆 , and focus on the first

four tuples, which represent the initial state of the relation before

deletion and insertion of tuples. To identify the FDs that are valid
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Table 1: Example of a relation with four initial tuples, and
a batch composed of one tuple to delete and two tuples to
insert indicated by the signs "-" and "+", respectively.

FN LN P S

𝑡1 John Bond Manager 2500

𝑡2 Marie Miller Manager 3000

𝑡3 Marie Bond Employer 2000

− 𝑡4 Tom Gray Manager 3000

+ 𝑡5 John Miller Employee 2000

+ 𝑡6 Anna Scott Manager 3000

in such a relation, the four tuples are compared in pairs to identify

the attributes on which they agree, e.g., the first two tuples give

rise to the following agree-set {𝑃}. This first step results in the

following set of agree-sets: {{𝑃}, {𝐿𝑁 }, {𝐹𝑁 }, {𝑃, 𝑆}, ∅}. In the

second step, FDs are derived based on such agree-sets. If we take

the example of DepMiner [21], to identify the FDs that have the

attribute 𝐹𝑁 in their rhs, i.e., FDs of the form 𝑋 → 𝐹𝑁 , it starts

by identifying maximal agree-sets that do not contain 𝐹𝑁 and are

different from the empty set, i.e.𝑚𝑎𝑥 (𝑟, 𝐹𝑁 ) = {{𝐿𝑁 }, {𝑃, 𝑆}}. It
goes on to construct the complementary of such a set, disregard-

ing the attribute 𝐹𝑁 . More precisely, the complement of {𝐿𝑁 }
is {𝑃, 𝑆} and the complement of {𝑃, 𝑆} is {𝐿𝑁 }, thus giving rise
to the complement set: 𝑐𝑚𝑎𝑥 (𝑟, 𝐹𝑁 ) = {{𝑃, 𝑆}, {𝐿𝑁 }}. The FDs
𝑋 → 𝐹𝑁 are obtained by identifying the minimal traversals of

the hypergraph formed by 𝑐𝑚𝑎𝑥 (𝑟, 𝐹𝑁 ). In the above case, there

are two minimal traversals, namely {𝐿𝑁, 𝑃} and {𝐿𝑁, 𝑆}, thus
giving rise to the following FDs: 𝐿𝑁, 𝑃 → 𝐹𝑁 and 𝐿𝑁, 𝑆 → 𝐹𝑁 .

Unlike schema-driven algorithms, data-driven algorithms per-

form well for relations with a large number of attributes but

with a small number of tuples (see Papenbrock et al. [23]). The
main bottleneck of this class of solutions is the generation of

agree-sets. We present in this paper DynASt, a system for the

efficient maintenance of agree-sets in dynamic datasets. To cater

for the discovery of approximate dependencies in dynamic set-

tings, DynASt utilizes prefix trees for the efficient storage and

retrieval of computed agree-sets. We investigate the performance

of DynASt and its scalability in terms of the number of tuples

and the number of columns of the target dataset. We also show

that it outperforms existing (static) state-of-the-art solution by

up to three orders of magnitude, and that it outperforms existing

dynamic state of the art solution, namely DynFD, for datasets
with a large number of attributes. Accordingly, the contributions

of this paper are as follows:

(1) Data structures that are carefully elaborated to cater for the
efficient computation of agree-sets in a dynamic setting

in Section 4.

(2) An algorithmic solution for incrementally computing agree-

sets and incrementally maintaining the underlying data

structures in Section 5.

(3) A mechanism for the indexing and efficient retrieval of

agree-sets in Section 6.

(4) Evaluation exercises that assess the efficiency of DynASt,
and compare its performance against a state-of-the-art

techniques in Section 7.

In addition, we lay the foundations of our work in Section 2.

We provide an overview of our solution in Section 3. We also

analyze and compare existing proposals to ours and close the

paper in Section 8.

2 FOUNDATIONS
Given a relation 𝑟 instance of a relational schema 𝑅, a data-driven

dependency discovery algorithms [13, 19, 20, 33] start by compar-

ing in a pair-wise manner the tuples of 𝑟 to identify the attributes

on which they agree.

Definition 2.1 (Agree-set). Given a relation 𝑟 instance of the

relational schema 𝑅, and a pair of tuples {𝑡𝑖 , 𝑡 𝑗 } of 𝑟 . The agree-
set of {𝑡𝑖 , 𝑡 𝑗 }, denoted by 𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ), is the set of attributes of 𝑅 for

which 𝑡𝑖 and 𝑡 𝑗 have the same values.

𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) = {𝐴 ∈ 𝑅 𝑠.𝑡 . 𝑡𝑖 [𝐴] = 𝑡 𝑗 [𝐴]}

Consider, for example, the Employee relation illustrated in Table

1 . The tuples 𝑡1 and 𝑡2 of such a relation have the same value

for the attribute 𝑃 , i.e., 𝑎𝑠 (𝑡1, 𝑡2) = {𝑃}. To store and manipulate

agree-sets efficiently, we use the bitset data structure. The agree-

set 𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) is represented by a bitset whose size is the number

of attributes in 𝑅. The bit at position 𝑘 is set to 1 if the tuples

𝑡𝑖 and 𝑡 𝑗 have the same value for the attribute at position 𝑘 in

the relational schema 𝑅, and is set to 0, otherwise. For example,

𝑎𝑠 (𝑡1, 𝑡2) of the tuple 𝑡1 and 𝑡2 in Table 1 will be represented in

DynASt using the the bitset 0010, since the two tuples agree only

on the third attribute 𝑃 .

Definition 2.2 (Relation Evidence Set). A relation evidence set

is a set, the elements of which are agree-sets. Specifically, the

evidence set of a relation 𝑟 is defined as follows:

𝐸𝑆 (𝑟 ) = {𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠 .𝑡 . ((𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝑟 ⊗ 𝑟 ) ∧ (𝑡𝑖 ≠ 𝑡 𝑗 )}

⊗ denotes unordered Cartesian product, which is a weaker form

of the Cartesian product.

Consider again the example illustrated in Table 1. The initial

Employee relation, denoted by 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 , which contains the four

initial tuples prior to deleting tuple 𝑡4 and inserting tuples 𝑡5 and

𝑡6. The computation of the agree-sets of every pair in 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 al-

lows us to derive the following relation evidence set for 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 :

𝐸𝑆 (𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ) = {{𝑃 }, {𝐿𝑁 }, {𝐹𝑁 }, {𝑃, 𝑆 }, ∅}, which using the bit-

set representation can be rewritten as follows: 𝐸𝑆 (𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ) =

{0010, 0100, 1000, 0011, 0000},
In the second phase, data-driven algorithms derive depen-

dencies from agree-sets. We illustrated in the introduction how

agree-sets are used by DepMiner [21] to infer functional depen-

dencies. Agree-sets are also used by key discovery algorithms.

For example, Gordian [27] uses agree-sets to identify non-keys,

e.g. 𝑃 is found to be a non-key given the agree-set 𝑎(𝑡1, 𝑡2) = {𝑃}.
Non-keys are then used to identify maximal non-keys, which in

turn are used to discover minimal keys.

Beyond exact data dependencies, agree-sets are key ingredi-

ents to the computation of approximate data dependencies [19].

Indeed, data-driven dependency discovery algorithms can be

adapted to the discovery of approximate dependencies. This is

achieved by associating each agree-set with a cardinality specify-

ing the number of times it occurs within a relation r. More details

on how our solution can be used in the context of approximate

dependency discovery are presented in Section 6.

The most computationally expensive phase in data-driven

dependency discovery algorithms, including DepMiner [21] and

FastFD [33], is the first phase, which consists of computing the

relation evidence set. In terms of computing the relation evidence

set, the most sophisticated proposal among the above ones is

DepMiner, in the sense that it avoids comparing all tuple pairs by

constructing maximal sets. Maximal sets refer to sets of tuples

that have the same value for at least one attribute. Thus, it avoids
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comparing tuples that are known to share no attribute values. We

will use this method as a baseline for our empirical evaluation,

and focus in what follows on presenting the solution we designed

for maintaining the relation’s evidence set under tuple insertion

and deletion.

3 OVERVIEW OF DYNAST
Consider a relation 𝑟𝑐𝑢𝑟𝑟 instance of 𝑅 for which the evidence

set has been computed, and let 𝑏 = (𝑏𝑑𝑒𝑙 , 𝑏𝑖𝑛𝑠 ) a batch of

tuples that are to be deleted from and inserted into 𝑟𝑐𝑢𝑟𝑟 :

𝑟𝑛𝑒𝑥𝑡 = 𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑖𝑛𝑠 \ 𝑏𝑑𝑒𝑙 . It is worth noting here that tuple up-

date is translated into the deletion of the existing tuple and the

insertion of a new tuple with the updated attribute values. Figure

1 illustrates the architecture of DynASt that we adopt to incre-

mentally compute the dependencies of 𝑟𝑛𝑒𝑥𝑡 given the changes

in 𝑏. The first step consists of computing the agree-sets that need

to be added and those that need to be removed given a batch of

𝑏. The second step updates the relation evidence set given the

computed deltas in agree-sets. Finally, the data dependencies are

updated given the new relation evidence set. This may entail

removing some existing data dependencies and the discovery of

new data dependencies.

++++
- - - -

Dataset

Compute Delta 
in Agree-Sets

Update 
Agree-sets

Update
Dependencies

Data structures

Dependencies

Batch

Figure 1: Processing of a single batch of tuple inserts and
deletes by DynASt.

Let us now consider in more details the problem of computing

the relation evidence set 𝐸𝑆 (𝑟𝑛𝑒𝑥𝑡 ) given a batch 𝑏 and a previ-

ously computed relation evidence set 𝐸𝑆 (𝑟𝑐𝑢𝑟𝑟 ). This operation
involves computing deltas, that is the agree-sets that need to be

added to and those that need to be removed from 𝐸𝑆 (𝑟𝑐𝑢𝑟𝑟 ) given
the batch 𝑏. The insertion of a tuple 𝑡 ∈ 𝑏𝑖𝑛𝑠 yields agree-sets

that may need to be added to 𝐸𝑆 (𝑟𝑐𝑢𝑟𝑟 ), if they are not in already.

Specifically, the set of agree-sets that needs to be unionied with

𝐸𝑆 (𝑟𝑐𝑢𝑟𝑟 ) as a result of the insertion of the tuples in 𝑏𝑖𝑛𝑠 can be

specified using the following set comprehension:

{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠 .𝑡 . ((𝑡𝑖 , 𝑡 𝑗 ) ∈ (𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑏𝑖𝑛𝑠 )) ∧ (𝑡𝑖 ≠ 𝑡 𝑗 )}
The deletion of the tuples in𝑏𝑑𝑒𝑙 from 𝑟𝑐𝑢𝑟𝑟 , on the other hand,

may mean the deletion of member agree-sets from 𝐸𝑆 (𝑟𝑐𝑢𝑟𝑟 ).
However, tuple deletion is trickier to handle: we cannot pro-

ceed as with insertion by deleting from 𝐸𝑆 (𝑟𝑐𝑢𝑟𝑟 ) the agree-sets
obtained using 𝑏𝑑𝑒𝑙 . The reason is that a member set of a rela-

tion evidence set can be obtained by more than one tuple-pair.

To illustrate this, consider the 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 relation that contains

the first four tuples illustrates in Table 1. And consider that tu-

ple 𝑡4 was deleted, i.e., 𝐸𝑚𝑝𝑛𝑒𝑥𝑡 = 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 \ {𝑡4}. We have the

following agree-set 𝑎𝑠 (𝑡1, 𝑡4) = {𝑃}, which is a member of the

relation-evidence set of 𝐸𝑆 (𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ). Notice that such a set is

also member of the relation evidence set 𝐸𝑆 (𝐸𝑚𝑝𝑛𝑒𝑥𝑡 ), even after
the deletion of 𝑡4. The reason is that there are two tuple pairs

that yield such a set, specifically 𝑎𝑠 (𝑡1, 𝑡4) = 𝑎𝑠 (𝑡1, 𝑡2) = {𝑃}.

To overcome the above problem,we extend the previous notion

of relation evidence set so that it becomes a multiset, in which

a member agree-set appears as many times as the number of

tuple-pairs in the relation that gives rise to such a set.

Definition 3.1 (Relation Evidence Multiset). The relation evi-

dence multiset of a relation 𝑟 , denoted by 𝐸𝑆𝑚 (𝑟 ), is defined by

the the following multiset comprehension:

𝐸𝑆𝑚 (𝑟 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠 .𝑡 . ((𝑡𝑖 , 𝑡 𝑗 ) ∈ 𝑟 ⊗ 𝑟 ) ∧ (𝑡𝑖 ≠ 𝑡 𝑗 )}}

We use double braces {{}}, to distinguish multisets from

sets. To know the number of times a given agree-set appears

within the multiset 𝐸𝑆𝑚 (𝑟 ), we assume the existence of the

function 𝑜𝑐𝑐 (𝐸𝑆𝑚 (𝑟 ), 𝑒𝑠), which given a multiset and a mem-

ber thereof, returns a positive number designating the number

of times 𝑒𝑠 appears in 𝐸𝑆𝑚 (𝑟 ). 𝑜𝑐𝑐 (𝐸𝑆𝑚 (𝑟 ), 𝑒𝑠) = 0 if 𝑒𝑠 is not

a member of 𝐸𝑆𝑚 (𝑟 ). Note that, by definition, it follows that

𝐸𝑆 (𝑟 ) = 𝑠𝑢𝑝𝑝 (𝐸𝑆𝑚 (𝑟 )), where 𝑠𝑢𝑝𝑝 () is a function that given a

multiset, returns the corresponding support set.

Using multisets, we can handle insertion and deletion in a sim-

ilar manner. Specifically, given the set of tuples 𝑏𝑑𝑒𝑙 , we compute

Δ−
𝐸𝑆𝑚

(𝑟 ), the multiset of agree-sets that needs to be subtracted (in

the multiset sense) from 𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 ) using the following multiset

comprehension:

Δ−
𝐸𝑆𝑚 (𝑟 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠.𝑡 . ( {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 )) ∧ (𝑡𝑖 ≠ 𝑡 𝑗 ) }}

In other words, given a tuple 𝑡𝑖 ∈ 𝑏𝑑𝑒𝑙 , all the agree-sets that are

obtained by pairing 𝑡𝑖 which each of the tuples in 𝑟
𝑐𝑢𝑟𝑟

are consid-

ered. To illustrate this, consider our example where bdel = {t4}.
Given that 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 = {𝑡1, 𝑡2, 𝑡3, 𝑡4}, we have:
Δ−
𝐸𝑆𝑚

(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒) = {{𝑎𝑠 (𝑡4, 𝑡1), 𝑎𝑠 (𝑡4, 𝑡2), 𝑎𝑠 (𝑡4, 𝑡3) }}. By comput-

ing the member agree-sets, we have

Δ−
𝐸𝑆𝑚

(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒) = {{{𝑃 }, {𝑃, 𝑆 }, ∅}}
Similarly, given the set of tuples 𝑏𝑖𝑛𝑠 , we compute Δ+

𝐸𝑆𝑚
(𝑟 ),

the multiset of agree-sets that needs to be unionised (in a multiset

sense) with 𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 ) using the following multiset comprehen-

sion:

Δ+
𝐸𝑆𝑚 (𝑟 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠.𝑡 . ( {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑏𝑖𝑛𝑠 )) ∧ (𝑡𝑖 ≠ 𝑡 𝑗 ) }}

In other words, given a tuple 𝑡𝑖 ∈ 𝑏𝑖𝑛𝑠 , all the agree-sets

that are obtained by pairing 𝑡𝑖 which each of the tuples in

𝑟𝑛𝑒𝑥𝑡 , i.e. 𝑟𝑐𝑢𝑟𝑟 \ 𝑏𝑑𝑒𝑙 ∪ 𝑏𝑖𝑛𝑠 , are added. Note that in doing

so, 𝑡𝑖 is not paired with the tuples in 𝑏𝑑𝑒𝑙 . This is because tu-

ples’ deletion are processed before tuples’ insertion. To illustrate

this, consider our example, where 𝑏𝑖𝑛𝑠 = {𝑡5, 𝑡6}. Given that

𝐸𝑚𝑝𝑛𝑒𝑥𝑡 = {𝑡1, 𝑡2, 𝑡3, 𝑡5, 𝑡6}, we have:
Δ+
𝐸𝑆𝑚

(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒) = {{𝑎𝑠 (𝑡5, 𝑡1), 𝑎𝑠 (𝑡5, 𝑡2), 𝑎𝑠 (𝑡5, 𝑡3),
𝑎𝑠 (𝑡5, 𝑡6), 𝑎𝑠 (𝑡6, 𝑡1), 𝑎𝑠 (𝑡6, 𝑡2), 𝑎𝑠 (𝑡6, 𝑡3) }}
After computing the member agree-sets, we have

Δ+
𝐸𝑆𝑚

(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒) = {{{𝐹𝑁 }, {𝐿𝑁 }, {𝑃, 𝑆 }, ∅, {𝑃 }, {𝑃, 𝑆 }, ∅}}
Notice that the same agree-set, e.g., {P,S}, appears as many times

as the number of unordered tuple pairs that yield it. The solu-

tion we propose gives the same results whether tuple insertions

are processed before deletions, or vice versa. That said, we opt

to process deletions first, as this avoids computing agree-sets

given tuple insertion, that will need to be removed anyway later

because of tuple deletion.

We can now formulate the following property for computing

ESm (rnext) in an incremental manner.

Property 1. Consider the evidence multiset 𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 ) of a re-
lation 𝑟𝑐𝑢𝑟𝑟 , and a batch of tuples 𝑏 = (𝑏𝑖𝑛𝑠 , 𝑏𝑑𝑒𝑙 ) that are inserted
and deleted from 𝑟𝑐𝑢𝑟𝑟 : 𝑟𝑛𝑒𝑥𝑡 = 𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑖𝑛𝑠 \ 𝑏𝑑𝑒𝑙 . The evidence
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Table 2: A compressed representation of the Employee re-
lation.

FN LN P S

𝑡1 0 0 0 0

𝑡2 1 1 0 1

𝑡3 1 0 1 2

− 𝑡4 2 2 0 1

+ 𝑡5 0 1 1 2

+ 𝑡6 3 3 0 1

multiset of 𝑟𝑛𝑒𝑥𝑡 can be incrementally computed as follows:

𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) = 𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 ) ⊕ Δ+
𝐸𝑆𝑚 (𝑟 ) ⊖ Δ−

𝐸𝑆𝑚 (𝑟 )

where ⊕ stands for multiset union, and ⊖ for multiset subtrac-

tion. Specifically, consider two multisets 𝑚𝑠1, 𝑚𝑠2, the union

𝑚𝑠3 = 𝑚𝑠1 ⊕ 𝑚𝑠2, and the subtraction 𝑚𝑠4 = 𝑚𝑠1 ⊖ 𝑚𝑠2. We

have 𝑜𝑐𝑐 (𝑚𝑠3, 𝑥) = 𝑜𝑐𝑐 (𝑚𝑠1, 𝑥) + 𝑜𝑐𝑐 (𝑚𝑠2, 𝑥), and 𝑜𝑐𝑐 (𝑚𝑠4, 𝑥) =
𝑚𝑎𝑥 (0, 𝑜𝑐𝑐 (𝑚𝑠1, 𝑥) − 𝑜𝑐𝑐 (𝑚𝑠2, 𝑥)). The proof for this property

can be found in the appendix.

Applying the above property to our example, we have:

𝐸𝑆𝑚 (𝐸𝑚𝑝𝑛𝑒𝑥𝑡 ) = 𝐸𝑆𝑚 (𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ) ⊖ Δ−
𝐸𝑆𝑚

(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒) ⊕
Δ+
𝐸𝑆𝑚

(𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒), where 𝐸𝑚𝑝𝑛𝑒𝑥𝑡 is the relation obtained

by deleting 𝑡4 and inserting 𝑡5 and 𝑡6 to 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 . That is:

𝐸𝑆𝑚 (𝐸𝑚𝑝𝑛𝑒𝑥𝑡 ) = {{{𝑃 }, {𝐿𝑁 }, {𝑃 }, {𝐹𝑁 }, {𝑃, 𝑆 }, ∅}}
⊕ {{{𝐹𝑁 }, {𝐿𝑁 }, {𝑃, 𝑆 }, ∅, {𝑃 }, {𝑃, 𝑆 }, ∅}}
⊖ {{{𝑃 }, {𝑃, 𝑆 }, ∅}}
Which yields the following relation evidence multiset:

𝐸𝑆𝑚 (𝐸𝑚𝑝𝑛𝑒𝑥𝑡 ) = {{{𝐿𝑁 }, {𝑃 }, {𝐹𝑁 }, {𝐹𝑁 }, {𝐿𝑁 }, {𝑃, 𝑆 }, ∅, {𝑃 }, {𝑃, 𝑆 }, ∅}}

Note that agree-sets that are empty-sets, specifying that the

tuple pairs in questions disagree on all attributes, are not informa-

tive as far as dependency discovery is concerned. As such, they

can be safely discarded when computing the evidence multiset

and the associated deltas.

The computation of Δ+
𝐸𝑆𝑚

(𝑟 ) and Δ−
𝐸𝑆𝑚

(𝑟 ) can be costly.

Δ+
𝐸𝑆𝑚

(𝑟 ) involves computing the agree-set of every pair in

𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑏𝑖𝑛𝑠 . Specifically, it requires ( | (𝑟𝑛𝑒𝑥𝑡 | · |𝑏𝑖𝑛𝑠 |) · |𝑅 | at-
tribute value-pair comparisons, where |𝑅 | designates the arity
of the relation. Given that (𝑖) 𝑟𝑛𝑒𝑥𝑡 = 𝑟𝑐𝑢𝑟𝑟 \ 𝑏𝑑𝑒𝑙 ∪ 𝑏𝑖𝑛𝑠 , (𝑖𝑖)

𝑏𝑑𝑒𝑙 ⊆ 𝑟𝑐𝑢𝑟𝑟 , and that (𝑖𝑖𝑖) 𝑟𝑐𝑢𝑟𝑟 \ 𝑏𝑑𝑒𝑙 and 𝑏𝑖𝑛𝑠 are mutually dis-

joint, we end up with ( |𝑟𝑐𝑢𝑟𝑟 | − |𝑏𝑑𝑒𝑙 | + |𝑏𝑖𝑛𝑠 |) · |𝑏𝑖𝑛𝑠 | · |𝑅 | attribute
value comparison. Computing Δ−

𝐸𝑆𝑚
(𝑟 ), on the other hand, in-

volves ( | (𝑟𝑐𝑢𝑟𝑟 | · |𝑏𝑑𝑒𝑙 |) · |𝑅 | attribute value-pair comparisons.

We will see later how judiciously chosen indexing structures can

be used to avoid such a costly operation.

4 DATA STRUCTURES
DynASt uses a compressed representation for relations, where

each attribute value is mapped to a number that uniquely iden-

tifies that value in the attribute column. Table 2 shows a com-

pressed representation of the Employee relation in Table 1. A

similar representation has already been used in HyFD [24] and

DynFD [26]. In addition to consuming less memory, this allows

for a more efficient equality comparison of attribute values.

The most expensive operation in data-driven FD discovery

algorithms is the computation of the relation evidence multiset.

We present in this section new data structures that underpin

DynASt to reduce the cost of this operation in a dynamic setting

where tuples are inserted and deleted.

Table 3: Attribute-value evidence sets for the relation in
Table 1
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4.1 Attribute-Value Evidence Vector
Given an attribute 𝐴 of 𝑅, and given a value 𝑣 of 𝐴, the evidence

vector for the attribute value 𝑣 , denoted by 𝐸𝑉 (𝐴, 𝑣) distinguishes
the tuples of 𝑟 whose attribute 𝐴 takes the value 𝑣 from those

whose attribute 𝐴 takes a value that is different from 𝑣 . In doing

so, 𝐸𝑉 (𝐴, 𝑣) is implemented as a bit vector, in which the 𝑖𝑡ℎ bit

is set to 1 if the the tuple it represents takes the value 𝑣 for the

attribute𝐴, and 0, otherwise. Notice that doing so assume that the

tuples of 𝑟 are associated with a position from 1 to |𝑟 |. To do so,

we assume the existence of a bijective function, 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒𝐴𝑡 (𝑟, 𝑖),
implemented using a list, which maps each integer value 𝑖 , where

1 ≤ 𝑖 ≤ |𝑟 |, to a tuple in 𝑟 . WLOG, we consider for exposition

sake that 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒𝐴𝑡 (𝑟, 𝑖) = 𝑡𝑖 .

Table 3 shows the evidence vectors of the attribute values of

the 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑐𝑢𝑟𝑟 relation, i.e., considering the first four tuples

in Table 1. Take for example the vector 𝐸𝑉 (𝐹𝑁, “𝐽𝑜ℎ𝑛”), the first
bit of which is set to 1 indicating that tuple 𝑡1 has "John" as a

first name, whereas the remaining bits are set to 0 indicating that

the tuples 𝑡2, 𝑡3 and 𝑡4 have first names that are different from

"John". Another example is that of 𝐸𝑉 (𝑃, “𝑀𝑎𝑛𝑎𝑔𝑒𝑟”) in which

only one bit is set to 0 indicating that the tuple 𝑡3 has a position

different from "Manager", whereas the remaining three tuples

have all "Manager" as a position.

Formally, an attribute-value evidence vector 𝐸𝑆 (𝐴, 𝑣) is de-
fined as follows:

𝐸𝑆 (𝐴, 𝑣) [𝑖] = 1, 𝑖 𝑓 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒 (𝑖) [𝐴] = 𝑣

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where 1 ≤ 𝑖 ≤ |𝑟 |. Attribute-value evidence sets are implemented

using bit-vectors whose size corresponds to the cardinality |𝑟 |.
In what follows, we assume the existence of an index 𝐴𝑉 𝐼𝑑𝑥

providing access to the attribute value evidence vector. Such

an index can be used to have access to all the available at-

tribute value evidence vectors for a given relation 𝑟 using

the operations 𝐴𝑉 𝐼𝑑𝑥 .𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠 (𝑅), as well as for respec-

tively retrieving, adding and removing a given attribute value

vector:𝐴𝑉 𝐼𝑑𝑥 .𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟 (𝐴, 𝑣, 𝑅),𝐴𝑉 𝐼𝑑𝑥 .𝑎𝑑𝑑𝑉𝑒𝑐𝑡𝑜𝑟 (𝐴, 𝑣, 𝑅) and
𝐴𝑉 𝐼𝑑𝑥 .𝑟𝑒𝑚𝑜𝑣𝑒𝑉𝑒𝑐𝑡𝑜𝑟 (𝐴, 𝑣, 𝑅) where 𝑣 is a value of the attribute
𝐴 of 𝑅. We omit the argument 𝑅, when it is clear from context.

Notice that given a relation 𝑟 , the number of attribute-value

evidence vectors that are generated is equal to the number of

distinct attributes values that appear in 𝑟 . For example, 𝐸𝑚𝑝𝑐𝑢𝑟𝑟

contains 11 different attribute values (see the initial four tuples in

Table 1), each of which gives rise to an attribute-value evidence

vector.
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4.2 Tuple-evidence Multiset
Given a relation 𝑟𝑐𝑢𝑟𝑟 and a batch 𝑏 = (𝑏𝑖𝑛𝑠 , 𝑏𝑑𝑒𝑙 ), to compute

Δ+
𝐸𝑆𝑚

(𝑟 ) and Δ−
𝐸𝑆𝑚

(𝑟 ), we make use, as we will see in Section

5, of the notion of tuple-evidence multiset, which is defined as

follows.

Definition 4.1 (Tuple-evidence Multiset). Given a tuple 𝑡 of 𝑟 ,

the evidence multiset of 𝑡 given 𝑟 , denoted by 𝐸𝑆𝑚 (𝑡, 𝑟 ) is a

multiset, the members of which are the agree-sets 𝑎𝑠 (𝑡, 𝑡𝑖 ), where
𝑡𝑖 ∈ 𝑟 \ {𝑡}. That is: 𝐸𝑆𝑚 (𝑡, 𝑟 ) = {{𝑎𝑠 (𝑡, 𝑡𝑖 ) 𝑠 .𝑡 . 𝑡𝑖 ∈ 𝑟 \ {𝑡}}}

Essentially, a tuple-evidence multiset 𝐸𝑆𝑚 (𝑡, 𝑟 ) provides infor-
mation about the agree-sets that the tuple 𝑡 contributes to the

relation evidence multiset 𝐸𝑆𝑚 (𝑟 ).
Notice that computing a tuple-evidence multiset involves com-

paring the attribute values of the tuple 𝑡 , with the attribute values

of every tuple 𝑡𝑖 in 𝑟 except for 𝑡 itself. To reduce the cost of this

operation, we make use of attribute-value evidence vectors that

we have introduced earlier at the beginning of this section. Specif-

ically, to compute 𝐸𝑆𝑚 (𝑡, 𝑟 ), we start by performing a zip-like

product operation of the attribute-value evidence vectors of the

attribute values in 𝑡 , giving rise to what we refer to as tuple-

evidence vector 𝐸𝑉 (𝑡, 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ).
Definition 4.2 (Tuple evidence vector). Given [𝐴1, . . . , 𝐴𝑚], the

list of attributes of 𝑅, and given a tuple 𝑡 of 𝑟 , the zip-bit product

(denoted by the symbol ⊙) of the attribute-value evidence vec-
tors 𝐸𝑉 (𝐴𝑖 , 𝑡 [𝐴𝑖 ]) with 𝑖 in [1,𝑚], generates the tuple-evidence
vector 𝐸𝑉 (𝑡, 𝑟 ):

𝐸𝑉 (𝑡, 𝑟 ) =
⊙

𝐴𝑖𝑖𝑛 [𝐴1,...,𝐴𝑚 ]
𝐸𝑉 (𝐴𝑖 , 𝑡 [𝐴𝑖 ])

where the 𝑗𝑡ℎ element of 𝐸𝑉 (𝑡, 𝑟 ) is a bitset that is obtained by

concatenating the 𝑗𝑡ℎ bits of the attribute-value evidence vectors

𝐸𝑉 (𝐴1, 𝑡 [𝐴1]), · · · , 𝐸𝑉 (𝐴𝑚, 𝑡 [𝐴𝑚].
As an example, consider the tuple 𝑡1 of the 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 relation.

The tuple-evidence vector 𝐸𝑉 (𝑡1, 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ) is obtained using the

following zip-bit product: 𝐸𝑉 (𝐹𝑁, 𝑡1 [𝐹𝑁 ]) ⊙ 𝐸𝑉 (𝐿𝑁, 𝑡1 [𝐿𝑁 ]) ⊙
𝐸𝑉 (𝑃, 𝑡1 [𝑃 ]) ⊙ 𝐸𝑉 (𝑆, 𝑡1 [𝑆 ]) , which is depicted in Figure 2. Notice

that the 𝑗𝑡ℎ element of the tuple-evidence vector is a bitset that

is obtained by concatenating the bits in the 𝑗𝑡ℎ position of the

attribute-value evidence vectors. Take for example the second

element in the tuple-evidence vector 𝐸𝑉 (𝑡1, 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 ), i.e., 0010.
The first bit is set to 0 because the 2nd element in the attribute-

value evidence vector 𝐸𝑉 (𝐹𝑁, 𝑡1 [𝐹𝑁 ]) is set to 0, while the third
bit of such bitset is set to 1 because the second bit of the attribute-

value evidence vector 𝐸𝑉 (𝑃, 𝑡1 [𝑃]) is set to 1.

Once a tuple-evidence vector 𝐸𝑉 (𝑡, 𝑟 ) is computed, the tuple

evidence multiset 𝐸𝑆𝑚 (𝑡, 𝑟 ) is obtained by constructing amultiset

the elements of which correspond to the bitsets in 𝐸𝑉 (𝑡, 𝑟 ), with
the exception of the bitset corresponding to 𝑎𝑠 (𝑡, 𝑡). Going back

to our example, the tuple-evidence multiset of 𝑡1 is obtained by

extracting the components bitsets of the vector 𝐸𝑉 (𝑡1, 𝐸𝑚𝑝𝑐𝑢𝑟𝑟 )
and discarding the bitset corresponding to 𝑎𝑠 (𝑡1, 𝑡1) to obtain the

following multiset: {{0010, 0100, 0010}}.
Note that bitsets with all bits set to 0 are not informative with

respect to data dependencies, since they simply indicate that

two tuples disagree on all attribute values. As such, they can

be removed. Let 𝑔𝑒𝑡𝑀𝑢𝑙𝑡𝑖𝑆𝑒𝑡 () be a function that given a vector

of bitsets, generates a multiset containing the elements of the

vector, except the bitset representing the agreeset 𝑎𝑔(𝑡, 𝑡) and
except the bitsets having all of their bits set to 0. We can now

state the following property:

Figure 2: Generating a tuple-evidence vector using
attribute-value evidence vectors
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Property 2 (Soundness of the generation of tuple-ev-

idence multiset). Given a tuple 𝑡 , and the list of attributes
[𝐴1, . . . , 𝐴𝑚] of 𝑅, the multiset obtained by first applying the zip-
bit product of the attribute-value evidence vectors 𝐸𝑉 (𝐴𝑖 , 𝑡 [𝑖]) with
𝑖 ∈ [1 : 𝑚], and then applying the function 𝑔𝑒𝑡𝑀𝑢𝑙𝑡𝑖𝑆𝑒𝑡 () is the
tuple-evidence multiset of 𝑡 , 𝐸𝑆𝑚 (𝑡, 𝑟 ). That is:

𝐸𝑆𝑚 (𝑡, 𝑟 ) = 𝑔𝑒𝑡𝑀𝑢𝑙𝑡𝑖𝑆𝑒𝑡 (
⊙

𝐴𝑖𝑖𝑛 [𝐴1,...,𝐴𝑚 ]
𝐸𝑉 (𝐴𝑖 , 𝑡 [𝐴𝑖 ]))

The proof for this property can be found in the appendix.

Inverted Attribute Index
As well as the above data structures, we need a means to effi-

ciently retrieve tuples having a given attribute value. Given an

attribute 𝐴 of a relational schema 𝑅, the inverted attribute index

of 𝐴 given the value 𝑣 , designated by 𝐼𝐴𝐼𝑑𝑥 (𝑅,𝐴, 𝑣), is a data

structure implemented using a hash-table that maps each value

𝑣 of 𝐴 to a set containing the identifiers of the tuples having 𝑣 as

the value for 𝐴.

Inverted attribute index is similar to position list index (PLIs)

(see Abedjan et al. [2]). These data structures are typically used

in schema-driven FD discovery algorithms, such as TANE [17],

to check the validity of candidate FDs. To do so, they intersect

the PLIs of the attributes involved in the candidate FD. In our

context, they are only intended for indexing unique attribute

values. As such, the construction of the inverted attribute index

takes a linear time since it can be generated using a single scan

of the relation in question.

5 HANDLING INSERTS AND DELETES
Having described DynASt’s architecture and underlining data

structures, we are now in a position to present the algorithms

it uses to incrementally compute the delta evidence multisets

following the insertion or deletion of tuples.

5.1 Handling Inserts
Given a relation 𝑟𝑐𝑢𝑟𝑟 and a set of tuples 𝑏𝑖𝑛𝑠 that are inserted,

Algorithm 1 details how the delta evidence multiset Δ+
𝐸𝑆𝑚

that

needs to be added to obtain the new relation evidence multiset,

is computed. To do so, for each tuple in 𝑏𝑖𝑛𝑠 , the tuple-evidence

multiset is computed and added to the delta evidence multiset

(line 11). The soundness of this processing for computing the delta

evidence multiset hinges on the soundness of the computation

of the tuple-evidence multiset (see Property 2).

As well as computing the delta evidence multiset, the algo-

rithm updates the indices. In particular, an entry (bit) for each

inserted tuple is appended to the attribute-value evidence vectors

(lines 17-19). For those attribute-value vectors having the same

value as the attribute of the inserted tuple, the added bit is set to

1 (lines 23-24). If an attribute value of the inserted tuples does

not exist, in which case there is no attribute-value vector that
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represents such value within the AVIdx, a new vector is created

(line 26). The entry bits of that vector are all set to 0 except for

the last one, which is set to "1". Indeed, because none of the other

tuples have that attribute value, the associated entry is 0, except

for the last entry bit which represents the inserted tuple, which is

associated with a 1-bit (lines 27-28). The algorithm also updates

the inverted attribute index by adding the inserted tuple to the

associated attribute-value clusters in IAIdx (line 21).

Algorithm 1 Compute-ES-Delta+

1: Inputs: 𝑟𝑐𝑢𝑟𝑟 ⊲ relation 𝑟 prior to receiving the batch

2: 𝑏𝑖𝑛𝑠 ⊲ set of inserted tuples

3: Output: Δ+
𝐸𝑆 (𝑟 ) ⊲ Multiset of evidence sets to be add to

𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 )
4: Begin
5: Δ+

𝐸𝑆 (𝑟 ) = ∅
6: 𝑠𝑖𝑧𝑒 = |𝑟𝑐𝑢𝑟𝑟 |
7: 𝑟𝑡𝑒𝑚𝑝 = 𝑟𝑐𝑢𝑟𝑟

8: for 𝑡𝑖 ∈ 𝑏𝑖𝑛𝑠 do
9: 𝑠𝑖𝑧𝑒 + +
10: 𝑢𝑝𝑑𝑎𝑡𝑒-𝐼𝑛𝑑𝑒𝑥-𝐺𝑖𝑣𝑒𝑛-𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑡𝑖 , 𝑠𝑖𝑧𝑒)
11: Δ+

𝐸𝑆 (𝑟 ) = Δ+
𝐸𝑆 (𝑟 ) ⊕ 𝐸𝑆

𝑚 (𝑡𝑖 , 𝑟𝑡𝑒𝑚𝑝 )
12: 𝑟𝑡𝑒𝑚𝑝 = 𝑟𝑡𝑒𝑚𝑝 ∪ {𝑡𝑖 }
13: end for
14: Return Δ+

𝐸𝑆 (𝑟 )
15: End
16:

17: Procedure 𝑢𝑝𝑑𝑎𝑡𝑒-𝐼𝑛𝑑𝑒𝑥-𝐺𝑖𝑣𝑒𝑛-𝐼𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 (𝑡, 𝑠𝑖𝑧𝑒)
18: for (𝑣 ∈ 𝐴𝑉 𝐼𝑑𝑥.𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠 ()) do
19: 𝑣.𝑎𝑑𝑑𝐵𝑖𝑡 (”1”)
20: end for
21: for (𝐴 ∈ 𝑅) do
22: 𝐼𝐴𝐼𝑑𝑥 .𝑔𝑒𝑡 (𝐴, 𝑡 [𝐴]) .𝑎𝑑𝑑 (𝑡 )
23: if (!𝐴𝑉 𝐼𝑑𝑥.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝐾𝑒𝑦 (𝐴, 𝑡 [𝐴])) then
24: 𝑣 = 𝐴𝑉 𝐼𝑑𝑥.𝑔𝑒𝑡 (𝐴, 𝑡 [𝐴])
25: 𝑣.𝑠𝑒𝑡𝐿𝑎𝑠𝑡𝐵𝑖𝑡 (”1”)
26: else
27: 𝑣 = 𝑛𝑒𝑤𝐵𝑖𝑡𝑉𝑒𝑐𝑡𝑜𝑟 (𝑠𝑖𝑧𝑒)
28: 𝑣.𝑠𝑒𝑡𝐴𝑙𝑙𝐵𝑖𝑡𝑠 (”0”)
29: 𝑣.𝑠𝑒𝑡𝐿𝑎𝑠𝑡𝐵𝑖𝑡 (”1”)
30: 𝐴𝑉 𝐼𝑑𝑥.𝑎𝑑𝑑 (𝐴, 𝑣, 𝑡 )
31: end if
32: end for
33: End

5.2 Handling Deletes
Given a set of tuples 𝑏𝑑𝑒𝑙 that are deleted from the relation 𝑟𝑐𝑢𝑟𝑟 ,

Algorithm 2 details how the delta evidence multiset Δ−
𝐸𝑆𝑚

that

needs to be subtracted to obtain the new relation evidence multi-

set, is computed. To do so, for each tuple in𝑏𝑑𝑒𝑙 , the tuple relation

evidence multiset is computed and added to the delta evidence

multiset (line 8).

The algorithm also updates the indices. In particular, the entry

(bit) representing the deleted tuple is removed from each attribute-

value evidence vector (lines 16-18). The inverted attribute index

is also updated by removing the ID of the deleted tuples from the

corresponding clusters in IAIdx (lines 19-21). Note that if a cluster

becomes empty as a result of this operation, the corresponding

(attribute, value) in 𝐼𝐴𝐼𝑑𝑥 is removed.

5.3 Optimizing the Computation of
tuple-evidence Vectors

Algorithm 2 Compute-EV-Delta-

1: Inputs: 𝑟𝑐𝑢𝑟𝑟 ⊲ relation 𝑟 prior to receiving the batch

2: 𝑏𝑑𝑒𝑙 ⊲ set of deleted tuples

3: Output: Δ−
𝐸𝑆 (𝑟 ) ⊲ Multiset of evidence sets subtract from

𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 )
4: Begin
5: Δ−

𝐸𝑆 (𝑟 ) = ∅
6: 𝑟𝑡𝑒𝑚𝑝 = 𝑟𝑐𝑢𝑟𝑟

7: for 𝑡𝑖 ∈ 𝑏𝑑𝑒𝑙 do
8: Δ−

𝐸𝑆 (𝑟 ) = Δ−
𝐸𝑆 (𝑟 ) ⊕ 𝐸𝑆

𝑚 (𝑡𝑖 , 𝑟𝑡𝑒𝑚𝑝 )
9: 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑛 (𝑡𝑖 )
10: 𝑢𝑝𝑑𝑎𝑡𝑒-𝐼𝑛𝑑𝑒𝑥-𝐺𝑖𝑣𝑒𝑛-𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 (𝑡𝑖 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
11: 𝑟𝑡𝑒𝑚𝑝 = 𝑟𝑡𝑒𝑚𝑝 \ {𝑡𝑖 }
12: end for
13: Return Δ−

𝐸𝑆 (𝑟 )
14: End
15:

16: Procedure 𝑢𝑝𝑑𝑎𝑡𝑒-𝐼𝑛𝑑𝑒𝑥-𝐺𝑖𝑣𝑒𝑛-𝐷𝑒𝑙𝑒𝑡𝑖𝑜𝑛 (𝑡, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
17: for (𝑣 ∈ 𝐴𝑉 𝐼𝑑𝑥.𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑠 ()) do
18: 𝑣.𝑟𝑒𝑚𝑜𝑣𝑒𝐵𝑖𝑡𝐴𝑡𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛)
19: end for
20: for (𝐴 ∈ 𝑅) do
21: 𝐼𝐴𝐼𝑑𝑥 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝐴, 𝑡 [𝑣 ], 𝑡 )
22: end for
23: End

The essence of the solution we have just described consists in

computing tuple-evidence vectors of a given batch (of inserted

or deleted tuples) using already precomputed attribute-value

evidence vectors. Consider, for example, that a new batch consist-

ing of four tuples 𝑡1, 𝑡2, 𝑡3 and 𝑡4 that have been inserted into a

relation 𝑟 with four attributes, and suppose that computing tuple-

evidence vectors corresponding to such tuples involves comput-

ing the following zip-bit products, where vij are attribute-value
evidence vectors:

• 𝐸𝑣 (𝑡1, 𝑟 ) = 𝑣11 ⊙ 𝑣12 ⊙ 𝑣13 ⊙ 𝑣14
• 𝐸𝑣 (𝑡2, 𝑟 ) = 𝑣21 ⊙ 𝑣12 ⊙ 𝑣13 ⊙ 𝑣14
• 𝐸𝑣 (𝑡3, 𝑟 ) = 𝑣31 ⊙ 𝑣32 ⊙ 𝑣13 ⊙ 𝑣14
• 𝐸𝑣 (𝑡4, 𝑟 ) = 𝑣41 ⊙ 𝑣42 ⊙ 𝑣13 ⊙ 𝑣14

So far, we have considered that tuple-evidence vectors of a

given batch are computed independently of each other. However,

by doing so, we miss opportunities to optimise the number of

zip-bit products that need to be performed for their computa-

tion. To illustrate this, consider the above tuple-evidence vectors

𝐸𝑣 (𝑡𝑖 , 𝑟 ) with 𝑖 in [1, 4]. Their computation involves performing

12 zip-bit products, 3 zip-bit products per tuple-evidence vector.

For example, 𝐸𝑣 (𝑡1, 𝑟 ) is computed by first computing the zip

product 𝑣11 ⊙ 𝑣12, which yields a vector that we denote by 𝑣11,12,

followed by the zip product 𝑣11,12 ⊙ 𝑣13, which gives the vector

𝑣11,12,13, and finally 𝑣11,12,13 ⊙ 𝑣14, which results in 𝑣11,12,13,14
representing the tuple-evidence vector 𝐸𝑣 (𝑡1, 𝑟 ).

The number of zip-bit products that need to be performed

to compute such tuple-evidence vectors can, however, be re-

duced. Indeed, notice that the tuple-evidence vectors 𝐸𝑣 (𝑡1, 𝑟 )
and 𝐸𝑣 (𝑡2, 𝑟 ) share the last three attribute-value evidence vec-
tors, and that the four tuple-evidence vectors share the last two

attribute-value evidence vectors. Therefore by carefully select-

ing the order in which the zip-bit products are performed we

can reduce the total number of zip-bit products that need to be

performed for computing the four tuple-evidence vectors. Specif-

ically, if we are to start by first performing the zip-bit product
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𝑣13 ⊙ 𝑣14 to obtain 𝑣13,14 (which is shared by the four tuple-

evidence vectors), and then the zip-bit product 𝑣12 ⊙ 𝑣13,14 to

obtain 𝑣12,13,14 (which is shared by the first two tuple-evidence

vectors), and then processing the remaining zip-bit products,

then we will end up performing 8 zip-bit products instead of 12

to compute the four tuple-evidence vectors. For large batches,

the number of zip-bit products saved can be significant especially

if the number of unique attribute values is small.

Finding the optimal ordering of zip-bit products can be expen-

sive, however. The problem outlined above is related to common

subexpression elimination [29] and code expression factorization

[6], and it is known that identifying terms (in our case the zip-bit

products) that can be used as factors with the view to perform

the minimum overall number of operations quickly becomes a

large combinatorial problem. Indeed, just with our example, with

4 attributes, each tuple yields 5 ways of performing the zip-bit

products, given the associative nature of the zip-bit products.

Comparing the obtained rewriting obtained among the tuples

to identify the largest chunks of zip-bit products that can be

used in common to reduce the overall number of performed zip-

bit products is combinatorially challenging. Therefore, we need

a solution that can identify promising factors in a reasonable

processing time and requiring small memory consumption.

Using existing factorization or common-subexpression elim-

ination techniques [6, 29] is not fit for our purpose since our

zip-bit product is associative but is not commutative. We there-

fore elaborated a new algorithm (Algorithm 3 below) that adapts

existing factorization techniques to our problem and utilizes two

data structures that can be constructed in a single pass of the

batch to be processed: 𝑇_𝑡𝑜_𝑉 𝑃_𝑡𝑜_𝑇 .

• 𝑇_𝑡𝑜_𝑉 is a hash data structure that specifies the attribute-

value evidence vectors of each tuple. In the case of the

above example, this gives rise to the following data

structure. 𝑇_𝑡𝑜_𝑉 = {𝑡1 : {𝑣11, 𝑣12, 𝑣13, 𝑣14}, 𝑡2 :

{𝑣21, 𝑣12, 𝑣13, 𝑣14}, 𝑡3 : {𝑣31, 𝑣32, 𝑣13, 𝑣14}, 𝑡4 :

{𝑣41, 𝑣42, 𝑣13, 𝑣14}}
• 𝑃_𝑡𝑜_𝑇 , on the other hand, specifies for each zip-bit

product the tuples in which is involved. Going back

to our example, this gives rise to the following data

structure. 𝑃_𝑡𝑜_𝑇 = {(𝑣11, 𝑣12) : {𝑡1}, (𝑣12, 𝑣13) :

{𝑡1, 𝑡2}, (𝑣13, 𝑣14) : {𝑡1, 𝑡2, 𝑡3, 𝑡4}, (𝑣21, 𝑣12) :

{𝑡2}, (𝑣31, 𝑣32) : {𝑡3}, (𝑣32, 𝑣13) : {𝑡3}, (𝑣41, 𝑣42) :

{𝑡4}, (𝑣42, 𝑣13) : {𝑡4}}.

Algorithm 3 operates iteratively, wherein each iteration de-

cides on which zip-bit product to perform. The zip-bit product

selected is the one that is associated with the set with themaximal

cardinality in 𝑃_𝑡𝑜_𝑇 , that is the one involved in the computa-

tion of the maximum number of evidence sets. To illustrate this,

consider the above zip-bit product to tuples mapping 𝑃_𝑡𝑜_𝑇 .

The zip-bit product occurring most of times are (𝑣13, 𝑣14), which
is involved in the computation of four evidence sets (Algorithm

3, line 7). The zip-bit product 𝑣13 ⊙ 𝑣14 is computed, giving rise

to the vector 𝑣13,14 (Algorithm 3, line 7). The two data structures

𝑇_𝑡𝑜_𝑉 and 𝑃_𝑡𝑜_𝑇 are updated accordingly by removing the

pair (𝑣13, 𝑣14) from 𝑃_𝑡𝑜_𝑇 , and updating both data structures

𝑇_𝑡𝑜_𝑉 and 𝑃_𝑡𝑜_𝑇 , when necessary to account for the creation

of the new evidence vector (Algorithm 3, lines 10-25) as follows.

• 𝑇_𝑡𝑜_𝑉 = {𝑡1 : {𝑣11, 𝑣12, 𝑣13,14}, 𝑡2 : {𝑣21, 𝑣12, 𝑣13,14}, 𝑡3 :

{𝑣31, 𝑣32, 𝑣13,14}, 𝑡4 : {𝑣41, 𝑣42, 𝑣13,14}}

• 𝑃_𝑡𝑜_𝑇 = {(𝑣11, 𝑣12) : {𝑡1}, (𝑣12, 𝑣13,14) :

{𝑡1, 𝑡2}, (𝑣21, 𝑣12) : {𝑡2}, (𝑣31, 𝑣32) : {𝑡3}, (𝑣32, 𝑣13,14) :

{𝑡3}, (𝑣41, 𝑣42) : {𝑡4}, (𝑣42, 𝑣13,14) : {𝑡4}}.
In the second iteration, the algorithm chooses to perform the

zip-bit product of the pair (𝑣12, 𝑣13,14) since this is the new most

frequent pair used in the processing of the tuples 𝑡1 and 𝑡2. The

new zip-bit product gives rise to the vector 𝑣12,13,14, and the data

structures 𝑇_𝑡𝑜_𝑉 and 𝑃_𝑡𝑜_𝑇 are updated as illustrated before.

The algorithm terminates when all the necessary zip-bit products

have been performed, i.e. when 𝑃_𝑡𝑜_𝑇 becomes an empty set.

It is worth noting that Algorithm 3 performs iteratively both

the ordering and the execution of zip-bit products, and it can be

used for the computation of tuple-evidence vectors in the case of

insertion as well as deletion.

Algorithm 3 Compute-Tuple-Evidence-Vectors

1: Inputs: 𝑃_𝑡𝑜_𝑇 ⊲ zip-bit product to tuples mapping.

2: 𝑇 _𝑡𝑜_𝑉 ⊲ Tuple to attribute-value evidence vector

mapping.

3: Output:𝑇𝑅_𝐸𝑉 ⊲ A dictionary of tuple-evidence vectors

4: Begin
5: 𝑇𝑅_𝐸𝑉 = {}
6: while (𝑃_𝑡𝑜_𝑇 ≠ ∅) do
7: (𝑣𝑖 , 𝑣𝑗 ) = 𝐸𝑑𝑔𝑒𝑊 𝑖𝑡ℎ𝑀𝑎𝑥𝐶𝑎𝑟𝑑 (𝑃_𝑡𝑜_𝑇 )
8: 𝑣𝑖 𝑗 = 𝑣𝑖 ⊙ 𝑣𝑗
9: 𝑃_𝑡𝑜_𝑇 .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑣𝑖 , 𝑣𝑗 )
10: for 𝑟 ∈ 𝑃_𝑡𝑜_𝑇 .𝑔𝑒𝑡𝑅𝑜𝑤𝑠 (𝑣𝑖 , 𝑣𝑗 ) do
11: 𝑟𝑜𝑤 = 𝑇 _𝑡𝑜_𝑉 .𝑔𝑒𝑡𝑅𝑜𝑤𝑠 (𝑟 )
12: 𝑟𝑜𝑤.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑣𝑖 , 𝑣𝑗 )
13: if ∃𝑣𝑥 𝑠.𝑡 . 𝑟𝑜𝑤.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑣𝑥 , 𝑣𝑖 ) then
14: 𝑟𝑜𝑤.𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ( (𝑣𝑥 , 𝑣𝑖 ), (𝑣𝑥 , 𝑣𝑖 𝑗 ))
15: 𝑃_𝑡𝑜_𝑇 .𝑔𝑒𝑡𝑅𝑜𝑤𝑠 (𝑣𝑥 , 𝑣𝑖 ) .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑟 )
16: 𝑃_𝑡𝑜_𝑇 .𝑔𝑒𝑡𝑅𝑜𝑤𝑠 (𝑣𝑥 , 𝑣𝑖 𝑗 ) .𝑎𝑑𝑑 (𝑟 )
17: end if
18: if ∃𝑣𝑦 𝑠.𝑡 . 𝑟𝑜𝑤.𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑣𝑗 , 𝑣𝑦 ) then
19: 𝑟𝑜𝑤.𝑟𝑒𝑝𝑙𝑎𝑐𝑒 ( (𝑣𝑗 , 𝑣𝑦 ), (𝑣𝑖 𝑗 , 𝑣𝑦 ))
20: 𝑃_𝑡𝑜_𝑇 .𝑔𝑒𝑡𝑅𝑜𝑤𝑠 (𝑣𝑗 , 𝑣𝑦 ) .𝑟𝑒𝑚𝑜𝑣𝑒 (𝑟 )
21: 𝑃_𝑡𝑜_𝑇 .𝑔𝑒𝑡𝑅𝑜𝑤𝑠 (𝑣𝑖 𝑗 , 𝑣𝑦 ) .𝑎𝑑𝑑 (𝑟 )
22: end if
23: if 𝑟𝑜𝑤 = ∅ then
24: 𝑇𝑅_𝐸𝑉 .𝑎𝑑𝑑 (𝑟, 𝑣𝑖 𝑗 )
25: end if
26: end for
27: end while
28: End

Note that the algorithm returns a dictionary specifying for

each tuple, designated by its row position 𝑟 , the associated tuple-

evidence vector. Once the evidence vectors are computed, the

evidence multiset is computed. In doing so, some agree-sets need

to be discarded in the case of tuple deletion, and others need to

be added in the case of tuple insertion.

6 INDEXING AND RETRIEVING
AGREE-SETS

To make use of the obtained agree sets, DynASt provides a means

for exploring and retrieving agree-sets. For applications that

seek to discover exact dependencies, it suffices to provide them

with the currently holding agree-sets or the delta in agree-sets

with respect to the last increment. For applications that seek

the discovery of approximate data dependencies, they may need

additional mechanisms that assist such solutions. Specifically,

for the discovery of approximate FDs and approximate keys,
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Figure 3: Example illustrating the AStree indexing the
agree-sets that holds in 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑛𝑒𝑥𝑡 .

underlying solutions need a mechanism for efficiently computing

errors of approximate dependencies. WLOG, we focus in the

remainder of this section on approximate FDs. The same solution

presented here for the retrieval of agree-sets can be utilized for

estimating the errors in candidate approximate keys.

Approximate FDs are FDs that may not be completely satisfied

by tuple pairs in a relation 𝑟 . Specifically, an approximate FD

𝑓 𝑑 : 𝑋 → 𝐴 is associated with an error specifying the percentage

of unordered tuple pairs {𝑡1, 𝑡2} in 𝑟 ⊗ 𝑟 that violate 𝑓 𝑑 , i.e., that

have the same values for the attributes 𝑋 and different values

for at least one attribute in 𝐴 [9, 19]. Given that the number

of unordered tuple pairs in 𝑟 ⊗ 𝑟 is
|𝑟 | · ( |𝑟 |−1)

2
, the error of an

approximate FD can be defined as follows:

Definition 6.1 (Error of Approximate FD). The error of an ap-

proximate FD 𝑓 𝑑 : 𝑋 → 𝐴 of a relation 𝑟 is defined as follows:

𝑒𝑟𝑟 (𝑓 𝑑, 𝑟 ) = 2 · | { {𝑡1, 𝑡2 } ∈ (𝑟 ⊗ 𝑟 ) 𝑠.𝑡 . (𝑡1 [𝑋 ] = 𝑡2 [𝑋 ]) ∧ (𝑡1 [𝐴] ≠ 𝑡2 [𝐴]) } |
|𝑟 | · ( |𝑟 | − 1)

When exploring the space of candidate approximate FDs, there

is, therefore, a need for a mechanism that identifies the propor-

tion of tuple-pairs (in other words agree-sets) that satisfy the

dependency in question. Therefore, the above definition can be

reformulated as follows.

Definition 6.2 (Error of Approximate FD). Given a relation 𝑟 of a
relational schema 𝑅, the error of the approximate FD 𝑓 𝑑 : 𝑋 → 𝐴
given 𝑟 is defined as follows:

𝑒𝑟𝑟 (𝑓 𝑑, 𝑟 ) = 2 · | {𝑎𝑠 ∈ 𝐸𝑆𝑚 (𝑟 ) 𝑠.𝑡 . ¬𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦 (𝑎𝑠, 𝑓 𝑑)) } |
|𝑟 | · ( |𝑟 | − 1)

where 𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦 (𝑎𝑠, 𝑓 𝑑) is a boolean function that returns true if

the agree-set 𝑎𝑠 satisfies the FD 𝐹𝐷 , and is false, otherwise.

Notice that the element that is computationally expensive

when computing the error is determining the magnitude of the

set {𝑎𝑠 ∈ 𝐸𝑆𝑚 (𝑟 ) 𝑠.𝑡 . ¬𝑠𝑎𝑡𝑖𝑠 𝑓 𝑦 (𝑎𝑠, 𝑓 𝑑)) }. To efficiently determine the

magnitude of such a set, we use two data structures for indexing

agree-sets. The first is a hash table that specifies for each agree-

sets the number of times it occurs in the relation evidencemultiset

𝐸𝑆𝑚 (𝑟 ). The second data structure is an extended prefix-tree [28],
which we refer to as AStree specifying the agree-sets that occur

in 𝐸𝑆𝑚 (𝑟 ). Figure 3 illustrates the AStree indexing the agree-sets
of the relation 𝐸𝑚𝑝𝑛𝑒𝑥𝑡 . We recall here that 𝐸𝑆𝑚 (𝐸𝑚𝑝𝑛𝑒𝑥𝑡 ) =

{{0010, 0010, 0100, 0100, 1000, 1000, 0011, 0011}}. Each edge is la-

beled by an attribute. An agree-set is represented by a path in the

tree. For convenience, we label the nodes in the tree by bitsets

representing the agree-set they represent. Moreover, each node is

associated with a flag (a bit), which is set for agree-sets that hold.

In or example AStree, all nodes, except the root, represent agree-

sets that hold that is why they are all checked. In the general

case, however, we may have internal nodes that are not checked

because they correspond to agree-sets that do not hold.

The AStree can be used for effectively computing the error of

a given candidate approximate function dependency. To illustrate

how, consider a candidate FD 𝑋 → 𝐴, where 𝑋 is a subset of

the attribute of the target relational table and 𝑋 is an attribute

of the relation such that 𝐴 ∉ 𝑋 . To compute the error of such

a dependency, we need to compute the number of agree-sets

that violate it. Such agree-sets can be characterized as bitsets

the size of which correspond to the arity of the relational table,

and in which the bits representing the attributes in 𝑋 are set to

1 whereas the bit representing the 𝐴 attribute is set to 0. This

is perhaps better explained using a concrete example. Consider

the 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 relation illustrated in Table 1, and consider the FD

𝐿𝑁 → 𝑃 . The bitsets representing agree-sets that violate such a

dependency are as follows: 0100, 1100, 0101 and 1101. To identify

the error of such a dependency, we need to identify for each of

such bitsets the one that exists in 𝐸𝑆𝑚 (𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑛𝑒𝑥𝑡 ), and add

up their cardinalities. This operation can be costly if the number

of bitsets that need to be examined is large. This is the case for

relational tables with a large number of attributes. The AStree

allows performing this operation efficiently. Indeed, to determine

the number of agree-sets that violate the dependency 𝐿𝑁 → 𝑃 ,

we simply perform a search in the AStree that is performed in a

single pass of the tree, and that returns all the agree-sets that are

equal to or special the agree-set 0101. An agree-set 𝑎𝑠1 specializes

and an agree-set 𝑎𝑠2 if every bit that is set to 1 in 𝑎𝑠1 is also set

to 1 in 𝑎𝑠2. Given the returned agree-sets, their cardinalities are

retrieved using the hash table used for this purpose.

The reader may wonder why we do not store the cardinality of

each valid agree-set in the AStree by using an integer instead of a

boolean flag specifying valid agree-sets. The reason we do that is

to reduce the number of updates that need to be performed to the

AStree when processing inserted or deleted tuples. Indeed, given

the insertion and/or deletion of tuples to the target relation, many

agree-sets will remain valid but their cardinalities are likely to

change. For such agree-sets, we do not need to update the AStree,

but simply update their associated cardinalities in the hash table.

7 VALIDATION
The solution we have presented for incremental computation of

agree-sets over dynamic data sets raises a number of questions.

In particular, how effective is DynASt, what parameters affect its

performance, and for which kind of datasets is it suitable? How

does it compare to state-of-the-art solutions solutions? Is the

insertion and deletion performance comparable? What is the cost

of maintaining the ASTree, and how do search queries perform

against them?

To answer the above questions, we conducted a series of ex-

periments, which we report on in this section. We conducted

the experiments on datasets, which were selected taking into

account two parameters that can impact the performance of the

presented solutions, namely the number of rows and the number

of columns in the datasets. Table 4 summarizes the characteristics

of the 6 datasets we used for the evaluation. The first two datasets

(Bridges and Iris) have a small number of rows and columns. The

Adult and Claims datasets have a large number of rows but a

small number of columns, while the last two datasets have a

small number of rows but a large number of columns. It should

be noted here that to our knowledge, none of the existing related

work considers datasets with a large number of columns, such as

the Uniprot dataset with 222 columns, for evaluation purposes.

The table also contains information on the number of agree-sets

and attribute-value evidence vectors in each dataset.
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Table 4: Characteristics of the datasets used in the evaluation.

Dataset #Columns #Rows #Agree-sets #Attribute-value evidence vectors
Bridges 13 108 644 337

Iris 5 150 27 126

Adult 15 32,561 9,555 22,146

Claims 10 101,984 512 20,657

Flight 109 1,000 19,099 4,203

Uniprot 222 1,000 326,698 29,396

Since our solution is intended for dynamic datasets, we parti-

tioned each dataset into a number of batch of size n, andmeasured

the time required to compute agree-sets given the insertion (and

deletion) of batches. We considered different batch sizes.

Regarding the competitive evalution, we used DeepMiner,

which we implemented in Java based on the description of the al-

gorithm given in [21].We also used the dynamic solutionDynFD
1
,

which is the most recent schema-based solution that caters for

the insertion and deletion of triples. We implemented DynASt
using Java

2
, and used for the empirical evaluation a server with a

single processor with a speed of 1.6 GHz, and 16 GB or memory.

This server runs on macOS 10.14.6 and uses JDK 1.8.

7.1 Batch Processing Performance
In our first experiment, we evaluated the performance of DynASt

in processing the insertion of batches of size equal to 50 on all

datasets. For the Bridges and Iris datasets, the time required was

low (less than 8 milliseconds). Figure 4 illustrates the results for

each of the remaining datasets, showing the time required to pro-

cess a batch after each quantile. (The figure also illustrates the

processing time for processing batch deletion, which we will ex-

amine later in Section 7.4.) For the Adult and Claims datasets, the

figure shows that Dynast’s performance is affected by the size of

the dataset into which the batch is inserted, in particular the pro-

cessing time increases slightly with dataset size. Notice that for

some batches, especially for the batch inserted after the 9th quan-

tile of the adult dataset, the processing time increases. This can

be explained by the fact that at this batch, new attribute values

appeared given the newly inserted tuples, resulting in the cre-

ation of new attribute-value evidence vectors. It should be noted,

however, that the performance is good given that the maximum

processing time for batch insertion is 1.4 second and is recorded

in the case of the Claims dataset. The figure also illustrates the

results for the Flight and Uniprot datasets, and shows that the

performance of DynASt is better for these datasets (compared

to the Adults and Claims datasets), despite the large number of

columns characterizing the Flight and Uniprot datasets. The max-

imum time recorded is 40 ms for the Flight dataset and 160 ms

for the Uniprot dataset. This first experiment shows that the per-

formance of DynAST is good when inserting small batches, and

that the performance is better for datasets with a large number

of columns than for datasets with a large number of rows.

7.2 Scalability
To evaluate the impact of batch size, we performed the previous

experiment by varying the batch size. For the Adults and Claims

dataset, the batch size varies between 10 and 1000, while for

the Flight and Uniprot dataset, the batch size varies between 10

1
github.com/HPI-Information-Systems/dynfd

2
github.com/khalidb/DynASt

and 150 tuples, since both datasets have a small number of rows.

Figure 5 illustrates the results. For a given batch size 𝑛, the figure

shows the average processing time recorded when successively

processing all batches of size 𝑛 that make up the dataset. The

figure shows that DynASt performs better for smaller batch sizes,

and that the larger the batch size, the higher the required process-

ing time. This observation applies to all datasets.We also note that

DynASt performs better for the Flight and Uniprot datasets de-

spite the large number of columns characterizing these datasets,

regardless of the batch size. Processing batches of 100 or less for

the Claims and Adult datasets requires little time. However, this

time increases for batches with 500 and 1000 tuples. This shows

that our solution scales well for datasets with a large number of

columns. It can also be used for datasets with a large number of

rows, provided that the batch size remains small (less than or

equal to 100 tuples).

To evaluate the impact of schema size (number of columns)

on DynASt’s performance, we considered for each dataset the

case where a portion of the dataset containing 500 tuples has

already been processed and examined the time required to pro-

cess the insertion of a batch of 50 tuples. Figure 6 illustrates the

results obtained. It shows that DynAST scales much better at the

schema level compared with the number of rows. For example,

the Flight dataset, which has 109 columns, ∼ 11 times the num-

ber of columns in the Claims dataset and 7 times the number of

columns in the Adult dataset, requires 100 ms to process a batch

of 50 tuples, a time comparable to the processing times recorded

in the case of the Adult and Claims datasets. This same observa-

tion applies for the Uniprot dataset, which is characterized by

a large schema consisting of 222 columns, that is, for example,

22 times the number of columns in the Claims dataset, and yet

requires 311 ms. This time is higher than the time required by

other datasets, but is still small in proportion to the schema size

for the Uniprot dataset. We also note that the time required for

processing the Flight dataset is smaller than that required by the

Adult dataset, which is characterized by a much smaller schema.

This can be explained by the fact that the number of attribute-

value evidence vectors in the case of the Flight dataset is smaller,

which is due to the fact that the number of distinct attribute

values is small in the Flight dataset compared with the Adult

dataset. This same observation also applies to the comparison

of processing time between the Flight and Uniport dataset. In

other words, Dynast is sensitive to the number of attribute-value

evidence vectors.

7.3 Competitive Evaluation
The objective of this experiment is to compare the performance

of our incremental solution to a baseline bulk-based solution.

As a baseline solution, we utilised the algorithm proposed by

DepMiner [21]. We are interested in identifying the batch sizes
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a) Adult dataset b) Claims dataset c) Flight dataset d) Uniprot dataset
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Figure 4: Processing of batches of size 50.

Table 5: Speedup of insertion processing required by our
solution compared with that of the baseline solution.

Dataset \ Batch size ratio 1% 10% 100% 1000%
Adult 439.1 15.62 12.13 9.94

Claims 45.59 5.83 0.23 0.18

Flight 581.64 74.37 17.33 14.36

Uniprot 6610.56 457.46 30.82 27.27

Table 6: Speedup of deletion processing required by our
solution compared with that of the baseline solution.

Dataset \ Batch size ratio 1% 10% 50% 75%
Adult 439.26 50.13 2.62 0.42

Claims 23.87 2.97 0.23 0.03

Flight 153.39 28.05 1.20 0.14

Uniprot 3984.29 536.88 10.53 0.24

for which our incremental solution outperforms the baseline

solution. To carry out this experiment, we changed the batch size

from small to very large (even larger than the initial dataset). To

do this, we defined the batch size relative to the initial dataset.

Specifically, we considered the cases where the batch size is equal

to 1%, 10%, 100%, and 1000% of the size of the initial dataset, and

computed the time required to generate agree-sets using our

incremental solution and the baseline solution, respectively.

Table 5 shows that for all datasets the incremental methods out-

performs largely the baseline solution, and that this performance

decreases as the batch size ratio increases. The table also showed

that even for a large batch size (1000%), our incremental solu-

tion outperforms the baseline solution, with the exception of the

Claims dataset. Take, for example, the Adult dataset. With a batch

size ratio of 1000%, our solution is nearly 10 times faster than the

baseline solution. This implies that our solution has merit also

for medium-sized datasets such as the Adult dataset containing

32,561 tuples. On the other hand, our solution is less suitable for

large batch size ratios when dealing with large datasets (in terms

of number of rows) such as the Claims dataset.

We also conducted an experiment comparing the performance

of DynASt with DynFD [26], a system for dynamic maintenance

of FDs. For this purpose, we extended DynASt to be able to gen-

erate FDs for given agree-sets. Rather than developing such an

extension from scratch, we used and adapted an algorithm, viz.

the FDEP algorithm [13], that was developed under the aegis

of the Metanome project
3
to generate FDs given agree-sets that

were computed using DynASt. We performed the same experi-

ment as the one described above, but with DynFD. The results

3
hpi.de/naumann/projects/data-profiling-and-analytics/

metanome-data-profiling.html

Table 7: Speedup of DynFD compared to DynASt in pro-
cessing datasets with large number of rows.

Dataset \ Batch size ratio 1% 10% 100% 1000%
Adult 2.66 15.61 11.03 13.12

Claims 4.07 11.66 16.22 24.23

Table 8: Speedup of DynASt compared to DynFD in pro-
cessing datasets with large number of columns .

Dataset \ Batch size ratio 1% 10% 100% 1000%
Flight 22.48 18.19 11.36 10.70

Uniprot X X X X

obtained can be divided into two classes, depending on whether

the datasets to be processed has a large number of rows or a

large number of columns. DynFD outperforms DynASt when

processing datasets with a large number of rows (see table 7). The

larger the number of rows to be inserted, the greater the differ-

ence in processing. For example, DynFD is up to 25 times faster

when processing the largest dataset (Claims). DynFD showed

similar performance in processing deletions when it came to such

datasets, i.e. Adults and Claims.

On the other hand, DynASt outperforms DynFD when pro-

cessing datasets with a large number of columns (see table 8).

In particular, DynASt can be up to 22 times faster than DynFD.

It is also worth mentioning that DynFD was unable to process

Uniprot: the program crashes after a long waiting time (20 min-

utes and 11 seconds waiting time in the case of processing the

insertion of 1% of the Uniprot dataset). It is also worth noting

that DynFD was not able to process deletions for both Flight and

Uniprot, regardless of the percentage of deleted tuples. DynASt,

on the other hand, was able to gracefully process deletions for

both of these datasets. Specifically, maintaining agree-sets when

deleting 75% of the Flight and Uniprot datasets required 1.08

seconds and 6.56 seconds, respectively.

The results of the above experiment support the hypothesis

made in the introduction regarding the superiority of the schema-

based solutions, i.e. DynFD, for datasets with a large number of

rows but a small number of attributes, and the superiority of data-

driven solutions, in this case DynASt, for datasets with a large

number of attributes but a small number of rows. The study thus

confirms DynASt’s position as a complement to existing schema-

based solutions when it comes to handling dynamic datasets.

7.4 Batch Deletion Processing
We conducted experiments like those described above where the

tuples in the batch are deleted from the initial datasets (instead
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a) Adult dataset b) Claims dataset c) Flight dataset d) Uniprot dataset

0

500

1000

1500

2000

10 50 100 150Pr
oc

es
sin

g 
tim

e 
(m

s)

Batch size

Deletion Insertion

0
50
100
150
200
250
300
350

10 50 100 150

Pr
oc

es
sin

g 
tim

e 
(m

s)

Batch size

Deletion Insertion

0

2000

4000

6000

8000

10 50 100 500 1000Pr
oc

es
si

ng
 ti

m
e 

(m
s)

Batch size

Deletion Insertion

0

10000

20000

30000

40000

50000

10 50 100 500 1000Pr
oc

es
sin

g 
tim

e 
(m

s)

Batch size

Deletion Insertion

Figure 5: Batch Size Scalability.
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Figure 6: Schema scalability.

of them being inserted into it). The results are reported in the

previous figures (Figures 4, 5 and 6), and the conclusions are

the same as with tuple insertion. There are two observations

that need to be reported, however, by comparison with batch

insertion. First, batch deletion tends to take a slightly smaller time

compared with batch insertion with datasets with a small number

of rows. This is the case for the Flight and Uniprot dataset. On

the other hand, we observed that for datasets for a large number

of rows, e.g., the Adult and Claims datasets, the processing time

tends to increase. This can be explained by the fact that in the

case of the tuple insertion, attribute-value evidence vectors are

updated by appending a new element, whereas in the case of

tuple deletion, attribute-value evidence vectors are updated by

deleting an existing element with positions in the middle of the

vectors. This last operation involves a search within the attribute-

element vector to identify the elements that represent the tuple

deleted, an operation that is can be costly compared with a simple

append, especially when the size of the attribute-value vector

(which is equal to the number of rows in the dataset) is large.

7.5 ASTree Processing
We have advocated the use of ASTree as a means of storing,

maintaining and querying agree-sets. We performed a series of

experiments examining the processing time required to main-

tain the agree-sets tree considering the insertion and deletion of

tuples. This experiment showed that for datasets with a small

number of columns, e.g., Adults and Claims, the required process-

ing time is low even when processing large batches. In contrast,

maintaining the agree-sets tree for datasets with a large number

of attributes, especially Uniprot, proved to be more expensive. It

should be noted, however, that not only the number of columns

affects the processing time, but also the number of agree-sets

that need to be added or removed. To illustrate this, the table

9 shows the processing time required for inserting and remov-

ing batches of 50 tuples in each of the datasets we considered.

Table 9: Agree-Set update given a batch of 50 tuples.

Adult (10) Claims (15) Flight (109) Uniprot (222)
Insertion 3.2 0.4 16.95 1590

Deletion 6.11 1.2 34 2300

It shows that the processing time is quite low for Adults and

Claims. It increases slightly for the Flight dataset, even though

the number of columns increases from 15 to 109. For the Uniprot

dataset, the processing time increased substantially, due to the

large number of columns that this dataset induces.

Note, however, that the processing time for deletion can be

decreased by not processing the deletion after each batch. Indeed,

we have an auxiliary structure (a map structure) that informs us

about the cardinalities of the agree-sets. Thus, such agree-sets

can be kept in the agree-set tree even when their cardinality

reaches the value 0. Indeed, using this strategy, we noticed that

the retrieval of agree-sets (or more specifically the specialization

of a given agree-set, which is necessary for the treatment of

approximate constraints for example) is negligibly affected, it

takes less than a millisecond.

8 RELATEDWORK AND CONCLUDING
REMARKS

Data profiling [1], in general, and data dependency discovery

[18], in particular, are classic problems that date back to the end

of the 90’s and that have gained momentum in recent years due

to the growing interest in the broad area of data-driven research

and analysis and the advent of data lakes.

8.1 Static Dependency Discovery
For data dependency discovery, existing solutions can be classi-

fied into two categories: schema-driven solutions and data-driven

solutions. Schema-driven solutions model the space of possible

solutions using a lattice whose nodes are subsets of the attributes

of the target relationship. Regarding FDs, for example, pioneered

by TANE algorithm [17], various solutions have been proposed

subsequently, including DFD [5], FD_MINE [34], and FUN [22].

Regarding key discovery, HCA [3], DUCC [16] and the proposal

by Giannella and Wyss [15] are schema-driven. The solutions in

this class propose different ways to efficiently traverse and prune

the lattice in the search for valid dependencies. Solutions that fall

in this category are known to perform well for datasets with a

large number of rows but a small number of columns (attributes).

The second class of solutions that have been pursued are data-

driven, and are known to perform well for datasets with a large

number of columns but a small number of rows. Solutions that

fall in this category compare the row of the datasets to identify

data dependencies. For example, the well-known key-discovery

Gordian algorithm [27] is data Driven. Regarding FDs, Dep-Miner

[21], FDEP [21] and FastFD [33] are the pioneering algorithms in
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data-driven dependency discovery algorithms. In essence, such

algorithms are based on agree-sets (or difference-sets), and algo-

rithms in this area attempt to reduce the number of agree-sets

that need to be computed to identify dependencies. For example,

DepMiner is based on the notion of maximal sets, which are

used to derive the tuple-pairs that need to be compared, thereby

discarding useless tuple-pairs that share no attribute values and

as such are not informative as far as FD discovery is concerned.

As well as the above schema-based and data-based approach,

a number of hybrid proposals have been made where the two

approaches are used in tandem, e.g., HyFD[24], PYRO [19], HCA-

Gordian [3] and the proposal by Wei and Link [31, 32]. Such

proposals use both tuple comparison with lattice traversal (which

is translated into PLI intersections in the case of FD discovery),

and they differ in how they combine the two techniques.

8.2 Dynamic Dependency Discovery
The proposals by Gasmi et al. [14] is perhaps the first to tackle the
problem of incremental discovery of FDs under tuple insertion. In

the same lines, the proposal by Caruccio et al. [8] have explored
the problem of maintaining FDs when tuples are inserted in

the target relation. The former is data-driven while the latter is

schema-driven. The two proposals are confined to tuple insertion,

and as such do not address the case of tuple deletion. Moreover,

the proposal by Gasmi et al. tackles the insertion of a single

tuple at a time, making it unsuitable in situations where updates

occur in batches. Wang et al. [30], on the other hand, tackles

tuple deletion using a schema-driven algorithm, and it does so

that by traversing the lattice of possible FDs to identify the FDs

that can be generalized. DynFD [26] is to our knowledge the

most complete in the sense that it maintains FDs under both

tuple deletion and insertion and in a batch-processing manner.

This proposal is also a schema-based that utilizes PLIs together

with covers representing minimal FDs and maximal non-FDs.

Given a set of tuples that are inserted, it inspects existing FDs to

identify the ones that have been invalidated. Conversely, given

tuples’ deletion, it examines the FDs that may have become non-

minimal as a result. Regarding key discovery, the only proposal

that we are aware of is SWAN [4]. It operates similarly to the

proposal by Schirmer et al., in the sense that it maintainsmetadata

information about minimal keys and maximal non-keys. Given

tuple insertion or deletion, it examines the keys or non-keys that

may have been affected as a result.

From the above, it transpires that existing complete solutions

capable of handling batches of insertions and deletions adopt a

schema-driven approach. DynASt complements the above pro-

posals by adopting a data-driven approach, focusing on the com-

putationally intensive step, namely the computation of agree-sets

and their maintenance against dynamic data sets. The data struc-

tures we have adopted as well as the associated algorithms allow

us to handle datasets with a large number of attributes, as shown

in the evaluation section. Moreover, empirical evaluation has

shown that our incremental solution outperforms the state of the

art of data-driven solutions even in static settings, and the most

recent dynamic solution DynFD for datasets with large number

of columns. In future work, we intend to investigate how our

proposed method for dynamic maintenance of agree-sets can be

used in tandem with a schema-based method to efficiently handle

data dependency discovery in dynamic settings.

9 APPENDIX: PROOFS
Proof for Property 1. To prove that 𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) =

𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 ) ⊕ Δ+
𝐸𝑆𝑚

(𝑟 ) ⊖ Δ−
𝐸𝑆𝑚

(𝑟 ) , we start by showing that:

𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 × 𝑟𝑐𝑢𝑟𝑟 ) ∪ (𝑟𝑛𝑒𝑥𝑡 × 𝑏𝑖𝑛𝑠 ) \ (𝑟𝑐𝑢𝑟𝑟 × 𝑏𝑑𝑒𝑙 )
We have:

𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑖𝑛𝑠 \ 𝑏𝑑𝑒𝑙 ) ⊗ (𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑖𝑛𝑠 \ 𝑏𝑑𝑒𝑙 )
Given that unordered Cartesian product, just like ordered Carte-

sian product, distributes over union and set difference, we have:

𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∪ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑖𝑛𝑠 ) ∪ (𝑏𝑖𝑛𝑠 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∪
(𝑏𝑖𝑛𝑠 ⊗𝑏𝑖𝑛𝑠 ) \ (𝑟𝑐𝑢𝑟𝑟 ⊗𝑏𝑑𝑒𝑙 ) \ (𝑏𝑖𝑛𝑠 ⊗𝑏𝑑𝑒𝑙 ) \ (𝑏𝑑𝑒𝑙 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) \ (𝑏𝑑𝑒𝑙 ⊗
𝑏𝑖𝑛𝑠 ) \ (𝑏𝑑𝑒𝑙 ⊗ 𝑏𝑑𝑒𝑙 )
Unordered cartesian product is, by definition, symmetric: (𝐴 ⊗
𝐵) = (𝐵 ⊗ 𝐴), and therefore (𝐴 ⊗ 𝐵) ∪ (𝐵 ⊗ 𝐴) = (𝐴 ⊗ 𝐵). By
applying this property to the above formula, we have:

𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∪ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑖𝑛𝑠 ) ∪ (𝑏𝑖𝑛𝑠 ⊗ 𝑏𝑖𝑛𝑠 ) \
(𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 ) \ (𝑏𝑖𝑛𝑠 ⊗ 𝑏𝑑𝑒𝑙 ) \ (𝑏𝑑𝑒𝑙 ⊗ 𝑏𝑑𝑒𝑙 )
Using again the fact that unordered Cartesian product distributes

over union and set difference, we factorize the above formula as

follows: 𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∪ ( (𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑖𝑛𝑠 \ 𝑏𝑑𝑒𝑙 ) ⊗
𝑏𝑖𝑛𝑠 ) \ ( (𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑑𝑒𝑙 ) ⊗ 𝑏𝑑𝑒𝑙 )
Given that 𝑟𝑛𝑒𝑥𝑡 = 𝑟𝑐𝑢𝑟𝑟 ∪ 𝑏𝑖𝑛𝑠 \ 𝑏𝑑𝑒𝑙 , we have:
𝑟𝑛𝑒𝑥𝑡 ⊗𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 ⊗𝑟𝑐𝑢𝑟𝑟 )∪(𝑟𝑛𝑒𝑥𝑡 ⊗𝑏𝑖𝑛𝑠 )\( (𝑟𝑐𝑢𝑟𝑟∪𝑏𝑑𝑒𝑙 ) ⊗𝑏𝑑𝑒𝑙 )
We have that 𝑏𝑑𝑒𝑙 ⊆ 𝑟𝑐𝑢𝑟𝑟 , which implies that 𝑟𝑐𝑢𝑟𝑟 ∪𝑏𝑑𝑒𝑙 = 𝑟𝑐𝑢𝑟𝑟 ,
thereby reducing the above formula as follows:

𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 = (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∪ (𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑏𝑖𝑛𝑠 ) \ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 )
We use the following two multiset properties to reach the

desired conclusion. Given two sets 𝐴 and 𝐵 such that 𝐴 ∩ 𝐵 = ∅:
{{𝑓 (𝑥) 𝑠.𝑡 . 𝑥 ∈ 𝐴∪𝐵 }} = {{𝑓 (𝑥) 𝑠.𝑡 . 𝑥 ∈ 𝐴}} ⊕ {{𝑓 (𝑥) 𝑠.𝑡 . 𝑥 ∈ 𝐵 }}

Given two sets 𝐵 and 𝐶 such that 𝐵 ⊆ 𝐶:

{{𝑓 (𝑥) 𝑠.𝑡 . 𝑥 ∈ 𝐵\𝐶 }} = {{𝑓 (𝑥) 𝑠.𝑡 . 𝑥 ∈ 𝐵 }} ⊖ {{𝑓 (𝑥) 𝑠.𝑡 . 𝑥 ∈ 𝐶 }}}

Using the above two properties, we have:

𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈ 𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑟𝑛𝑒𝑥𝑡 }}

𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑐𝑢𝑟𝑟 ⊗𝑟𝑐𝑢𝑟𝑟 ) ∪ (𝑟𝑛𝑒𝑥𝑡 ⊗
𝑏𝑖𝑛𝑠 ) \ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 ) }

Given that (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 ) ⊆ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) , we have:
𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∪ (𝑟𝑛𝑒𝑥𝑡 ⊗
𝑏𝑖𝑛𝑠 ) }} ⊖ {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 ) }}

And, given that (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) ∩ (𝑟𝑛𝑒𝑥𝑡 ⊗ 𝑏𝑖𝑛𝑠 ) = ∅, we have:
𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) = {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑟𝑐𝑢𝑟𝑟 ) }} ⊕
{{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈ (𝑟𝑛𝑒𝑥𝑡 ⊗𝑏𝑖𝑛𝑠 ) }} ⊖ {{𝑎𝑠 (𝑡𝑖 , 𝑡 𝑗 ) 𝑠𝑡 . {𝑡𝑖 , 𝑡 𝑗 } ∈
(𝑟𝑐𝑢𝑟𝑟 ⊗ 𝑏𝑑𝑒𝑙 ) }}

Which yields the conclusion we are after:

𝐸𝑆𝑚 (𝑟𝑛𝑒𝑥𝑡 ) = 𝐸𝑆𝑚 (𝑟𝑐𝑢𝑟𝑟 ) ⊕ Δ+
𝐸𝑆𝑚 (𝑟 ) ⊖ Δ−

𝐸𝑆𝑚 (𝑟 )

Proof for Property 2. Consider the 𝑖𝑡ℎ element of the vec-

tor 𝐸𝑉 (𝑡, 𝑟 ), and let us examine the 𝑗𝑡ℎ bit in such element.

Such a bit is set to 0 if 𝑡 and the tuple in the 𝑖𝑡ℎ position,

𝑡𝑖 = 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒𝐴𝑡 (𝑟, 𝑖), have the same value for the attribute 𝐴 𝑗 ,

and 0 otherwise. This allows us to conclude that the the 𝑖𝑡ℎ el-

ement of the vector 𝐸𝑉 (𝑡, 𝑟 ) represents the agree-set 𝑎𝑠 (𝑡, 𝑡𝑖 )
where 𝑡𝑖 = 𝑔𝑒𝑡𝑇𝑢𝑝𝑙𝑒𝐴𝑡 (𝑟, 𝑖). Given that 𝑖𝑡ℎ ranges from 1 to the

size of 𝑟 , we can conclude that the elements in the vector 𝐸𝑉 (𝑡, 𝑟 )
cover all the agree-sets 𝑎𝑠 (𝑡, 𝑡𝑖 ) where 𝑡𝑖 ∈ 𝑟 , including 𝑡 itself.

We can therefore conclude that the multiset that is created from

such a vector by eliminating the element compose of bits set to 0

is the tuple evidence multiset 𝐸𝑆𝑚 (𝑡, 𝑟 ).
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