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ABSTRACT
Several application domains require data to be enriched prior
to its use. Data enrichment is often performed using expensive
machine learning models to interpret low-level data (e.g., models
for face detection) into semantically meaningful observation. Col-
lecting and enriching data offline before loading it to a database
is infeasible if one desires online analysis on data as it arrives.
Enriching data on the fly at insertion could result in redundant
work (if applications require only a fraction of the data to be
enriched) and could result in a bottleneck (if enrichment func-
tions are expensive). Any scalable solution requires enrichment
during query processing. This paper explores two different ar-
chitectures for integrating enrichment into query processing –
a loosely coupled approach wherein enrichment is performed
outside of the DBMS and a tightly coupled approach wherein it is
performed within the DBMS. The paper addresses the challenges
of increased query latency due to query time enrichment.

1 INTRODUCTION
Organizations, today, have access to potentially limitless data
sources in the form of web data repositories, social media posts,
and continuously generated sensory data [8]. Such data is of-
ten low-level and needs to be enriched to be useful for analysis.
Functions used to transform or enrich data (called enrichment
functions in this paper) could consist of (a combination of) custom-
compiled code, declarative queries, and/or expensive machine
learning (ML) techniques. Examples include sentiment analy-
sis [23] of social media posts, named entity extraction [15], face
recognition [33, 40], and missing value imputation in relational
data [34].

Data enrichment could be performed as a periodic offline pro-
cess prior to loading the data into a database for analysis. For
instance, in the enterprise data warehouses, the data collected
from diverse transactional databases is stored in the raw format
at the time of data arrival. Such data is periodically loaded into a
data warehouse [2–4, 11] after transformation. This strategy can
be categorized as an extract-transform-load process. This strat-
egy adds a significant delay between the time data arrives (or is
created) and when the data is available for analysis. This limits
the ability of organizations to analyze data in (near) real-time
as it arrives. Systems such as Spark Streaming [59] are capable
of executing enrichment functions on the newly arriving data
before its storage into a DBMS. Recently, [53] has explored ways
to optimize enrichment during ingestion. However, such systems
suffer from several limitations.
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Limitations of data enrichment at ingestion. Enriching data
at arrival exhibits several limitations: (i) Unnecessary enrichment:
Enriching data at ingestion could incur high overhead of redun-
dant data enrichment, if the analyst uses only (a small) portion of
the data. If workloads are predictable, one could potentially limit
enrichment to only data that is expected to be used. However,
accurate prediction of the workload can be difficult, as argued
in [25, 47]. (ii) No support of complex enrichment: Enriching data
at ingestion is only feasible if enrichment functions are not com-
putationally expensive. When functions use complex ML models
(e.g., Multi-layer Perceptron, Random Forest), executing them at
ingestion would create a bottleneck. (iii) Limited data ingestion:
Enriching all data as it arrives limits the system to ingest only
10s of events per second.1

In order to reduce latency between the time when data ar-
rives/is created andwhen data is available for analysis that require
data to be enriched before using, this paper explores effective
ways to integrate data enrichment into query processing in
databases.

Challenges of data enrichment at query execution. Inte-
grating data enrichment with query processing raises several
challenges: (i) How to determine which data items/objects need
to be enriched to answer a query correctly. (ii) Where should
enrichments be performed — either closer to the data at the
DBMS possibly using stored procedures and user-defined func-
tions (UDFs), or outside of the DBMS in an enrichment server.
Both offer different pros and cons in terms of data movement,
redundant enrichment, and scope for parallelism. (iii) How to
reduce the query execution time — while enrichment at query
time reduces the amount of work at ingestion (hence, scaling
ingestion to higher data rates), it potentially causes an increased
query execution time for individual queries.

Our contributions. This paper addresses the above-mentioned
challenges. Our contributions in the paper are as follows:
(1) We develop and discuss pros/cons of two distinct solutions

to support joint query processing and data enrichment: (i) a
loosely coupled approach (referred to as loose design) that
performs data enrichment at an external server (different from
a database server), called as enrichment server and (ii) a tightly
coupled approach (referred to as tight design) that uses stored
procedures and UDFs to co-process enrichment and queries
at the DBMS. Both strategies attempt to minimize the number
of redundant enrichments.

(2) We address the challenge of increased query latency due to en-
richment using a progressive approach of answering queries.
In particular, we implement efficient strategies that use in-
cremental view maintenance (IVM), UDFs, and their batched

1The challenge of executing complex ML functions on data as it arrives, was discussed extensively
in the curated session of SIGMOD 2021 [41], that identified that often organizations are forced to
use simpler functions that can be performed at ingestion, even though it results in poor quality.
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tid UserID Tweet feature location TweetTime topic sentiment
𝑡1 John Uploading pics on Facebook. [0.2, ..., 0.4] US 16:08 social media positive
𝑡2 Mark Feeling great and listening to music. [0.5, ..., 0.3] US 16:48 entertainment NULL
𝑡3 Richard Sad about current pandemic. [0.6, ..., 0.4] UK 11:48 NULL NULL

Table 1: TweetData table where topic and sentiment are the derived attributes.

SELECT * FROM 𝑅1, 𝑅2, 𝑅3
WHERE 𝑅1 .A1 = 𝑎1 AND

𝑅1 .𝐴2 = 𝑎2 AND 𝑅1 .A1 = 𝑅2 .A3
AND 𝑅1 .𝐴2 = 𝑅2 .𝐴4 AND

𝑅3 .A1 = 𝑎1 AND 𝑅3 .𝐴5 = 𝑎5
AND 𝑅3 .A3 = 𝑅1 .A3 AND

𝑅3 .𝐴5 = 𝑅2 .𝐴4

(a) Original query.

⊲⊳
𝑅3 .A3=𝑅1 .A3∧
𝑅3 .𝐴5=𝑅2 .𝐴4

⊲⊳
𝑅1 .A1=𝑅2 .A3∧𝑅1 .𝐴2=𝑅2 .𝐴4

𝜎𝑅1 .A1=𝑎1∧𝑅1 .𝐴2=𝑎2

𝑅1

𝑅2

𝜎𝑅3 .A1=𝑎1∧𝑅3 .𝐴5=𝑎5

𝑅3

(b) Query tree.

Figure 1: Original query and its query tree.

execution to enrich and maintain query results efficiently
during query execution.

(3) We experimentally evaluate both the designs in various do-
mains of social media and multimedia data using multiple
enrichment functions. Results show that both the designs out-
perform significantly than the approach of enriching data at
ingestion.
In [13] we envisioned a data management system that supports

enrichment transparently to the end-users and identified several
challenges. We defined a new data model and presented applica-
tion scenarios for the proposed system. This paper addresses the
implementation challenges identified in [13] and implements a
tightly-coupled and loosely-coupled data management system
that supports enrichment of data at query time. Furthermore, in
[9] we developed approaches to order enrichments that optimize
progressiveness of queries using the loose design proposed in
this paper.

2 ENRICHMENT AT QUERY PROCESSING
Before presenting our approaches for data enrichment during
query execution, we discuss our data model that is an extended
relational model and the notion of enrichment functions. In our
data model, some attributes of a relation are derived (denoted as
A𝑖 ) and require enrichment; the remaining attributes are fixed
(denoted as 𝐴 𝑗 ) and do not require enrichment. Enrichment is
performed by a set of associated enrichment functions with A𝑖 .
Without loss of generality, all relations contain an id attribute
to uniquely identify tuples. E.g., in a relation storing tweets, a
derived attribute can be the tweet’s sentiment, which is enriched
using sentiment analysis functions on the tweet. Likewise, in a
relation storing images, the identity of people in images can be
the derived attribute, which is enriched using face recognition
techniques for identifying a person.

In general, several enrichment functions could be used either
independently or in combination to determine the value of a
derived attribute. If an enrichment function is executed on a
tuple, the derived attribute will take the value of the function
output. If there are no enrichment function executed so far,
then the attribute value will beNULLNULLNULL. For example, in Table 1,
the values of two derived attributes topic and sentiment are
NULL in 𝑡3, since they are not enriched yet.

2.1 Query Processing in Loose Design
This design executes enrichment outside of the DBMS at an
enrichment server. Given a query 𝑞, the key step is to generate
probe queries (𝑝𝑞(𝑅𝑖 )) — for each relation 𝑅𝑖 whose derived
attribute is a part of 𝑞 — to identify a “minimal” subset of tuples
(as small a subset as possible) that need to be enriched to execute
𝑞. The retrieved tuples by probe queries are enriched in the
enrichment server, and the corresponding modified (enriched)
values are updated at the DBMS. Finally, query 𝑞 is executed at
the DBMS.

It exploits the following strategies to identify the minimal
subset:
• Exploiting Prior Work: 𝑝𝑞(𝑅𝑖 ) filters out all tuples of 𝑅𝑖 that have
been enriched earlier (e.g., as part of prior queries), and hence,
their derived attribute values in the database are not NULL.

• Exploiting Selection Conditions on Fixed Attributes: 𝑝𝑞(𝑅𝑖 ) filters
all tuples of 𝑅𝑖 that do not satisfy selection conditions over
fixed attributes of 𝑅𝑖 . E.g., for the query of Figure 1a, to identify
the tuples of 𝑅1 that require enrichment, 𝑝𝑞(𝑅1) retrieves only
those tuples of 𝑅1 that satisfy the condition 𝑅1 .𝐴2 = 𝑎2.

• Exploiting Join Conditions on Fixed Attributes: 𝑝𝑞(𝑅𝑖 ) filters out
all tuples of 𝑅𝑖 that would not join with any tuples in 𝑅 𝑗 , if
a join condition exists between 𝑅𝑖 and 𝑅 𝑗 in 𝑞 based on fixed
attributes. E.g., for the query of Figure 1a, the tuples of relation
𝑅1 that do not match with any tuples of 𝑅3 based on the join
condition of 𝑅3 .𝐴1 = 𝑅1 .𝐴1 do not need to be enriched.

ProbeQuery Generation Steps. The steps for generating
probe queries (based on above three strategies) are as follows:

[Step 0]: Query Tree Generation: An input query 𝑞 is first
converted into a corresponding query tree, in which, selection
conditions are pushed down as much as possible. The conditions
present in selection and join nodes are converted into a conjunc-
tive normal form (CNF), i.e., (𝐶 = 𝐶1 ∧ 𝐶2 ∧ . . . ∧ 𝐶𝑧 ). Each
condition 𝐶𝑖 ∈ 𝐶 is characterized as either a fixed condition
(i.e., a condition containing only fixed attributes) or a derived
condition (i.e., a condition containing only derived or both fixed
and derived attributes).

Figure 1b shows the query tree generated from the query of
Figure 1a. In a CNF condition 𝑅1 .A1 = 𝑎1 ∧ 𝑅1 .𝐴2 = 𝑎2, the
condition 𝑅1 .𝐴2 = 𝑎2 is a fixed condition, while 𝑅1 .A1 = 𝑎1 is
derived.

[Step 1]: Rewrite of Selection Condition (𝜎𝐶 (𝑅)): Given a CNF
condition𝐶 at a selection node, for each derived condition𝐶𝑖 ∈ 𝐶

over derived attribute(s) A1, . . . ,A𝑛 , this step finds only those
tuples for which there exists an attribute A𝑖∈[1,...,𝑛] that has
not been enriched before. This filtering is achieved by replacing
𝐶𝑖 by

[
(∨𝑛

𝑖=1 A𝑖 = NULL) ∨𝐶𝑖
]
. The fixed conditions are kept

identical.
Figure 2a, for the CNF expression 𝑅1 .A1 = 𝑎1 ∧ 𝑅1 .𝐴2 = 𝑎2 as

shown in Figure 1b, shows rewritten selection as: ((𝑅1 .A1 is NULL∨
𝑅1 .A1 = 𝑎1) ∧ 𝑅1 .𝐴2 = 𝑎2). Note that only the first condition is
modified as it is a derived condition, while the second condition
is kept identical as it is fixed.
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⊲⊳
𝑅3 .A3=𝑅1 .A3∧
𝑅3 .𝐴5=𝑅2 .𝐴4

⊲⊳
𝑅1 .A1=𝑅2 .A3∧
𝑅1 .𝐴2=𝑅2 .𝐴4

𝜎 (𝑅1 .A1 is NULL ∨
𝑅1 .A1=𝑎1)
∧ 𝑅1 .𝐴2=𝑎2

𝑅1

𝑅2

𝜎 (𝑅3 .A1 is NULL ∨
𝑅3 .A1=𝑎1) ∧
𝑅3 .𝐴5=𝑎5

𝑅3

(a) Step 1: Rewritten query tree for selection
conditions.

𝑁1

𝑁2

𝑁3
(b) Step 2: Join graph (Node𝑁1 :
𝜎 (𝑅1 .A1 is NULL ∨𝑅1 .A1=𝑎1 ) ∧𝑅1 .𝐴2=𝑎2 (𝑅1) ,
Node 𝑁2 : 𝑅2, and Node 𝑁3 :
𝜎 (𝑅3 .A1 is NULL ∨𝑅3 .A1=𝑎1 ) ∧𝑅3 .𝐴5=𝑎5 (𝑅3)).

⟨𝑁2 ⋉𝑅2 .𝐴4=𝑅3 .𝐴5 𝑁3;
𝑁1 ⋉𝑅1 .𝐴2=𝑅2 .𝐴4 𝑁2; ⟩

(c) Step 3: Semi-join programs for 𝑅1.

𝜎𝑅1 .𝐴2=𝑎2∧(𝑅1 .A1 is NULL∨𝑅1 .A1=𝑎1) (𝑅1)⋉𝑅1 .𝐴2=𝑅2 .𝐴4[
𝑅2⋉𝑅2 .𝐴4=𝑅3 .𝐴5 (𝜎 (𝑅3 .𝐴5=𝑎5)∧(𝑅3 .A1 is NULL∨𝑅3 .A1=𝑎1) (𝑅3))

]
(d) Step 4: The probe query for 𝑅1.

Figure 2: Steps involved in loose design.

[Step 2]: Generating Join Graph: This step and the next step
3 exploits join conditions on fixed attributes in a query to filter
out tuples of 𝑅𝑖 that do not require enrichment. Given a modified
query tree using Step 1 for selection conditions, now, a join-
graph is generated from the tree. The purpose of the join graph
is to find out for a relation 𝑅𝑖 in the query: which join conditions
(on fixed attribute) with other relations can be utilized to reduce
the number of tuples of 𝑅𝑖 that require enrichment.

In the join graph, the nodes correspond to reduced relations,
i.e., relations with the selection conditions applied on them. An
edge between two nodes shows the join conditions between
two relations (based on the original query) expressed in CNF
form. Next, from each edge of the join graph, all the derived
join conditions are removed. If all the conjuncts are on derived
attributes, then we obtain just graph nodes that show none of
the join conditions between the two relations can be exploited
to reduce the set of tuples that require enrichment. (In a query
tree union, set-difference, or cross product operators are
ignored, since they cannot be utilized to reduce the number of
tuples in probe queries apart from the join conditions.)

Figure 2b shows a join-graph for the query tree of Figure 2a.
This graph contains three nodes: ⟨𝑁1, 𝑁2, 𝑁3⟩, representing the
reduced relations of ⟨𝑅1, 𝑅2, 𝑅3⟩, respectively, i.e., after applying
selection conditions on each relation. Edge between 𝑁1 and 𝑁2
represents the join condition 𝑅1 .𝐴2 = 𝑅2 .𝐴4 (after removing
the join condition 𝑅1 .A1 = 𝑅2 .A3 on derived attributes from
Figure 2a).

[Step 3]: Semi-join Program Generation: Given the join graph
as an input, for each node 𝑁𝑖 in the graph, this step generates a
set of semi-join programs for 𝑁𝑖 to reduce the number of tuples
of 𝑁𝑖 that require enrichment. For 𝑁𝑖 , semi-join programs are
generated by exploiting join conditions among nodes of the graph.
For node 𝑁𝑖 , this step starts from node 𝑁𝑖 in the join graph and
generates a spanning tree, denoted as ST (𝑁𝑖 ), that contains all
nodes of the graph with the minimum possible number of edges
(using breadth-first traversal). From ST (𝑁𝑖 ), multiple semi-join
programs are generated based on the join conditions in ST (𝑁𝑖 ).

Semi-join programs for a node 𝑁𝑖 are generated in a bottom-
up manner from ST (𝑁𝑖 ) starting from the children nodes and
reaching upto 𝑁𝑖 . For each node encountered in the path, a semi-
join program is generated. The nodes in ST (𝑁𝑖 ) are traversed in
a breadth-first order from the leaf node to the root node. All the
semi-join programs between the leaf node and their immediate
parent nodes are created first. This step is continued until all the
paths from the leaf node to the root node are consumed.

For example, ST (𝑁1) for node 𝑁1, is a tree with root as the
node 𝑁1, the node 𝑁2 as the child of 𝑁1, and the node 𝑁3 as the
child of 𝑁2 (same as the graph shown in Figure 2b). In ST (𝑁1)
(Figure 2b), a semi-join between relations 𝑁2 and 𝑁3 is performed

first to identify the tuples of relation 𝑅2 (part of 𝑁2) that may
result in the join output of 𝑅2 and 𝑅3 (as shown in Figure 2c).
After this, a semi-join between 𝑅1 and the tuples of 𝑅2 output
from the previous semi-join, is performed. Using these two semi-
join programs, this step is able to eliminate two types of tuples
from 𝑅1: (i) the tuples of 𝑅1 that do not join with any tuple of 𝑅2
and 𝑅3, and (ii) the tuples of 𝑅1 that may join with some tuples
of 𝑅2 but ultimately do not join with any tuple of 𝑅3. This step
for semi-join reduction we used is based on the seminal work on
semi-join given in [19].

[Step 4]: Generating probe queries: Given the semi-join pro-
grams (obtained in the previous step), this step generates a probe
query based on the semi-join programs and the selection condi-
tions on 𝑅𝑖 in a straightforward manner. For example, in Figure
2d, we show the probe query generated for 𝑅1, from the semi-
join programs described in Figure 2c and the selection conditions
added to the query tree of Figure 2a for 𝑅1.

2.2 Query Processing in Tight Design
The tight design rewrites an input query 𝑞 into a modified query
𝑞′ that checks whether each derived attribute A𝑖 ∈ 𝑞 has been
enriched earlier. If not, 𝑞′ invokes a UDF, called read𝑢 UDF that
executes enrichment functions and updates the value of A𝑖 .The
read𝑢 is implemented as a generic function that takes as inputs:
the name of the relation (e.g., ‘𝑅𝑖 ’), the name of the derived at-
tribute (e.g., ‘A 𝑗 ’), tuple identity, and the identity of an enrich-
ment function.

Rewrite of Selection Condition: This design rewrites each se-
lection condition (𝑅.A𝑖 op 𝑎𝑖 ) ∈ 𝑞 (where op is ≥, >, =, ≤, <, or
≠, and 𝑎𝑖 is a constant value) that contains a derived attribute,
by a modified selection condition denoted as 𝜔𝜎 (𝑅.A𝑖 op 𝑎𝑖 ), as
follows:

𝑅.A𝑖 op 𝑎𝑖 ∨ [
𝑅.A𝑖 isNULL ∧ read𝑢 (‘𝑅’, ‘A𝑖 ’, 𝑅.𝑖𝑑, 𝑓A𝑖

.𝑖𝑑) op 𝑎𝑖
]

Here, 𝑓A𝑖
.𝑖𝑑 refers to the identity of an enrichment function

for A𝑖 . In this rewritten condition, if a tuple’s value in A𝑖 is al-
ready enriched, then the original selection condition is evaluated
(i.e., 𝑅.A𝑖 op 𝑎𝑖 ). Otherwise, read𝑢 UDF is executed on the tuple
to enrich the attribute A𝑖 first, and then the selection condition
is executed. Note that read𝑢 UDF is only invoked if the derived
attribute value has not been enriched before.

Rewrite of Join Condition: We rewrite each join condition
𝑅𝑝 .A𝑖 op 𝑅𝑞 .A 𝑗 ∈ 𝑞 that contains derived attributes A𝑖 and
A 𝑗 , by a modified join condition, denoted as 𝜔𝜎 (𝑅.A𝑖 op 𝑎𝑖 ),
based on whether one (or both) of the derived attributes in the
condition have previously been enriched. If both the derived
attributes have been enriched, (𝑅𝑝 .A𝑖 op 𝑅𝑞 .A 𝑗 ) is executed
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with no modification. If one of the attributes (say 𝑅𝑝 .A𝑖 ) is not
enriched, then 𝑅𝑝 .A𝑖 is replaced with a call to UDF read𝑢 on
𝑅𝑝 .A𝑖 in order to enrich the attribute as part of checking the
join condition. If both of the attributes (i.e., 𝑅𝑝 .A𝑖 and 𝑅𝑞 .A 𝑗 )
are not enriched, then both attributes in the join condition are
replaced by calls to the read𝑢 UDF. The modified join condition
of 𝜔⊲⊳ (𝑅𝑝 .A𝑖 op 𝑅𝑞 .A 𝑗 ) is shown below:

𝑅𝑝 .A𝑖 op 𝑅𝑞 .A 𝑗 /*Both A𝑖 and A 𝑗 are enriched*/

∨
[
𝑅𝑝 .A𝑖 is not NULL ∧ 𝑅𝑞 .A 𝑗 is NULL /* Only A𝑖 is enriched */

∧ read𝑢 (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑, 𝑓A 𝑗
.𝑖𝑑, ) op 𝑅𝑝 .A𝑖

]
∨
[
𝑅𝑝 .A𝑖 is NULL ∧ 𝑅𝑞 .A 𝑗 is not NULL /*Only A 𝑗 is enriched*/

∧ read𝑢 (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑, 𝑓A𝑖
.𝑖𝑑) op 𝑅𝑞 .A 𝑗

]
∨
[
𝑅𝑝 .A𝑖 is NULL ∧ 𝑅𝑞 .A 𝑗 is NULL /* None of A𝑖 or A 𝑗 are enriched*/

∧ read𝑢 (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑, 𝑓A𝑖
.𝑖𝑑) op read𝑢 (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑, 𝑓A 𝑗

.𝑖𝑑)
]

Example. Below, we illustrate the rewritten queries for the query
of Figure 1a using modified selection (𝜔𝜎 ) and join conditions
(𝜔⊲⊳) as described above.

SELECT * FROM 𝑅1, 𝑅2, 𝑅3 WHERE 𝜔𝜎 (𝑅1 .A1 = 𝑎1) AND
𝑅1 .𝐴2 = 𝑎2 AND 𝜔⊲⊳ (𝑅1 .A1 = 𝑅2 .A3) AND 𝑅1 .𝐴2 = 𝑅2 .𝐴4

AND 𝜔𝜎 (𝑅3 .A1 = 𝑎1) AND 𝑅3 .𝐴5 = 𝑎5 AND
𝜔⊲⊳ (𝑅3 .A3 = 𝑅1 .A3) AND 𝑅3 .𝐴5 = 𝑅2 .𝐴4

3 PROGRESSIVE QUERY PROCESSING
While both designs reduce redundant enrichment of data and
scale to higher ingestion rates (still supporting queries on data
as it arrives), they increase query latency due to query time
enrichment. To reduce query latency, this section explores ways
to make both the design progressive that iteratively refines the
query results as more enrichments are performed.

A progressive approach allows data to be consumed by ana-
lysts right away and the computation can be stopped at any time
they are satisfied with the results [16, 44, 55]. Progressive query
processing has been studied extensively in approximate evalu-
ation of aggregation queries (Approximate Query Processing –
AQP) [30, 37, 43] to reduce query latency arising from process-
ing of massive datasets. In contrast, in this paper, the challenge
is to reduce query latency arising from the execution of expensive
enrichment functions.

To develop a progressive approach, we exploit a tradeoff be-
tween cost and quality, which ML models often exhibit; cheaper
(i.e., low execution cost) functions produce prediction faster with
low accuracy, compared to more expensive (i.e., high execution
cost) functions that produce slower but high-quality predictions.
E.g., a random forest classifier (RF) implemented using a small
number of decision tree (DT) models is cheaper but less accurate
compared to an RF classifier using many DT models as long as it
does not overfit the training data. Such a behavior of classifiers is
also highlighted in prior work of [24] that studied cost-accuracy
tradeoff of diverse classifiers for sentiment analysis in tweets.
Other examples of exploring cost-quality tradeoff of deep neural
networks include accelerating performance by reducing float-
ing point precision [26, 50, 60] and ways to reduce the network
size by reducing the width of the layers, skipping layers, or by
skipping modules [21, 54, 57]. Each of these techniques trade
complexity (and hence cost) with model precision. Based on this
tradeoff, we achieve progressive answering by running cheap
functions on (a subset of) data to generate initial answers and
subsequently selecting additional data to enrich and/or enrich
the old data using more functions to refine the answers.

Below, we develop a progressive approach of enriching data
and answering queries for both the loose and tight designs. We
begin by defining the semantics of progressive query processing
and then describe ways to achieve progressiveness. From here in
this section, by loose and tight designwe refer to their progressive
versions.

3.1 Progressive Queries
This section first describes notations that help in defining the
progressive versions of the loose and tight designs.

Notations. We now permit multiple enrichment functions to be
associated with each derived attribute.2 Suppose A is a derived
attribute and the set of enrichment functions associated with
A is {𝑓1, 𝑓2, . . . , 𝑓𝑛}. This set of enrichment functions is called
function-family of A. For example, the sentiment derived
attribute of TweetData (Table 1) may form a function-family with
decision tree (DT), a k-nearest neighbor (KNN), multi-layered
perceptron (MLP), or a support vector machines (SVM) classifier.

At any instance of time, for a given tuple 𝑡 and for a given
derived attribute A of a relation, multiple enrichment func-
tions might have been executed, resulting in the value for A
in 𝑡 . We refer to the set of functions in the function-family that
have executed as the state of the derived attribute (denoted
as state(𝑡 .A)) in the tuple 𝑡 . The state of a derived attribute
state(𝑡 .A) contains two components: state-bitmap that stores
a list of enrichment functions that have been executed on 𝑡 .A;
and state-output that stores the output of executed enrichment
functions on 𝑡 .A.

Each function-family is associated with a determinization
function that finds the value of A in 𝑡 based on state(𝑡 .A).
The determinization function (denoted by DET (∗)) could use
any ensemble technique [39, 56] for generating a value based on
enrichment functions executed so far, e.g., it could use a most
likely value, or a value based onmajority consensus [39].We treat
the determinization function as a black-box and is independent
of the specific function used. Note that DET (state(𝑡 .A)) returns
a single or a NULL value. NULL value represents a situation
when state of the attribute does not provide enough evidence
to the determinization function to assign any value for 𝑡 .A. As
more functions execute, the state ofA changes,DET (state(𝑡 .A))
computes a new value of A in 𝑡 .

The notion of the state of a derived attribute generalizes to the
state of tuples, relations, and databases in a straightforward way.
The state of a tuple 𝑡 (or a relation 𝑅 or a database 𝐷) denoted
by state(𝑡) (or state(𝑅𝑖 ) or state(𝐷)) is the concatenation of the
state of all derived attributes of 𝑡 (or the concatenation of the
state of all tuples or the concatenation of the state of all rela-
tions). Likewise, the concept of determinization also generalizes
to a tuple, a relation, and a database, denoted by DET (state(𝑡)),
DET (𝑅𝑖 ), and DET (𝐷), respectively.

Progressive Query Processing. Now, we concretely develop
the concept of progressive query processing. We discretize the
query execution time into epochs: {e0, e1, . . . , ez}. 𝑒0 is a special
epoch to initialize data structures.3 In each epoch, we select a set
of derived attributes and functions to enrich those attributes.
2Progressive approach is still possible when there is a single enrichment function associated
with derived attributes since the system can choose a subset of data to enrich progressively.
However, it is much more effective when it is able to exploit the tradeoffs between execution
time and quality.

3For simplicity, we will consider epochs {e1, e2 , . . . , ez } to be fixed size in the remainder of the
paper, though, the approach does not require this to be the case.
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Let 𝑞 be a query, and let 𝑅1, 𝑅2, . . . , 𝑅𝑛 be the set of relations
that are used in 𝑞. Let state(𝐷, 𝑒𝑘 ) be the resulting state of the
database based on all the enrichment functions that have exe-
cuted in (or before) epoch 𝑒𝑘 . Let DET (state(𝐷, 𝑒𝑘 )) be the cor-
responding determinized representation of the database, where
all derived attributes take a value based on their states.

Progressive query execution in an epoch 𝑒𝑘 returns the results
of query executed over the determinized representation of data,
i.e., returning answers to 𝑞(DET (state(𝐷, 𝑒𝑘 )), where the deter-
minized representation of 𝐷 include outputs of all enrichment
functions that have been executed so far. Answers to query 𝑞

differ from epoch 𝑒𝑘−1 to 𝑒𝑘 , due to the database’s state change
by enrichment functions in the epoch 𝑒𝑘 .

Realizing progressive approach raises two related issues (given
below) that we address in this section.

• Managing State. State represents the current state of enrich-
ment of all tuples in the database. In other words, the state refers
to the information about enrichment functions that have been
executed and their outputs. The state helps us to avoid repeated
execution of enrichment functions on objects. Since the number
of objects and the outputs of enrichment functions can be large
(e.g., a probability distribution), efficient ways to represent the
state are also needed.

• Incremental Execution of Enrichment and Queries. The fol-
lowing two problems need to be addressed to execute enrichment
and queries in an incremental manner: (i) Selection of objects and
enrichment functions: We need to select a set of ⟨object, enrich-
ment function⟩ pairs that improve the quality of existing query
results across different epochs. Sampling-based approaches can
be used to select objects/enrichment functions (similar to AQP
systems [14, 45]), or a benefit-based approach [27] can be used to
optimize specific quality of results (e.g., 𝐹𝛼 -measure). (ii) Main-
taining query results incrementally to avoid the overhead of com-
puting query results from scratch: As in each epoch the state of
the database changes, a straightforward strategy to compute
progressive answers is to simply execute the query at the end of
each epoch over the determinized representation of the database.
Such an approach, however, is wasteful, due to re-executing the
query in each epoch without exploiting the work of the previ-
ous epochs. Instead, we explore a strategy based on Incremental
ViewMaintenance (IVM) [20, 36, 42] that is supported by several
database systems. Such a strategy computes answers as a delta
answer over the previously reported query answers.

3.2 State Management
In both the loose and tight designs, the state of derived attributes
of tuples for a relation 𝑅 is stored as a separate table, State(𝑅).
For each derived attribute, State(𝑅) contains a (state) bitmap and
a (state) output vector. As mentioned in §3.1, the bitmap contains
a bit for each enrichment function associated with the attribute,
where 1 means the function was already executed and 0 means
it is yet to execute. The output vector contains the results of the
execution of enrichment functions.

In both designs, the state table is maintained in the database.
In loose design, since enrichment is performed outside of the
database, an in-memory cache for the state table is maintained at
the enrichment server to reduce the number of database updates.
This cache only contains the tuples that may need to be enriched
during the entire query execution (i.e., the result of probe queries,
as will be discussed in §3.3), and the updates are pushed to the
database at the end of the epoch. State table or cache makes sure

tid Topic
BitMap

TopicOutput Sentiment
BitMap

Sentiment Output

𝑡1 [1,0,0] [[0.18,0.64,0.05,...],[],[]] [1,0,0] [[0.94, 0.06,0], [], []]
𝑡2 [1,0,1] [[0.5,0.2,0.1, ...],[],[0.1,0.6,0.1, ...]] [1,0,1] [[0.2,0.6,0.2],[], [0.86,0.1,0.04]]
𝑡3 [0,1,0] [[], [0.78,0.06,0.02, ...], []] [1,1,0] [[0.1,0.7,0.2], [0.2,0.8,0],[]]

Table 2: TweetDataState table (created for TweetData table).

that the same derived attribute of a tuple is never enriched using
the same enrichment function multiple times in both approaches.
Example. Table 2 shows a state table for TweetData table (see
Table 1) for topic and sentiment derived attributes. Consider
tuple 𝑡2 bitmap for sentiment attribute; that shows enrichment
functions 1 and 3 were executed while function 2 is not yet exe-
cuted. Enrichment functions 1 and 2 are probabilistic classifiers
and their outputs were probability distributions [0.2, 0.6, 0.2, . . . ]
and [0.86, 0.1, 0.04, ], respectively, over an ordered domain of
values. ■

Compressed State Representation. In the case of a large do-
main size of a derived attribute, the columns corresponding to
its state output can be large. E.g., if domain size of topic in
TweetData is 40 and there are 3 enrichment functions, then
TopicStateOutput column (see Table 2) could contain 120 val-
ues in each row. Such a large domain could incur high storage
overhead and read/write cost of the states. Instead, both designs
use a compressed representation for state output when domain
sizes are large. It sets a cutoff threshold and only stores the do-
main values whose probability is above that threshold. Domain
values are appropriately mapped to integers using a dictionary
encoding and the probabilities are stored as key-value pairs. The
compressed representation does not store large tails of a proba-
bility distribution.4

3.3 Joint Enrichment and Query Execution
Both designs perform enrichment in epochs and require an up-
date of query results at the end of epochs. Instead of re-executing
the query to find the modified answers, we use an incremental
query processing approach based on Incremental View Mainte-
nance (IVM). Below, we discuss how IVM supports incremental
processing, and how it is integrated in both the designs.

Background on Incremental ViewMaintenance (IVM).Given
a view corresponding to a query 𝑞, for each table 𝑅𝑖 ∈ 𝑞, IVM
algebraically derives an incremental query Δ𝑞 that is executed
(e.g., using triggers as in [36]) whenever the base tables change.
Δ𝑞 query computes only the delta changes of the materialized
view 𝑞. Correctness of IVM is characterized by ensuring that:
[𝑞(𝐷+Δ𝐷) = 𝑞(𝐷)+Δ𝑞(𝐷,Δ𝐷)], where𝐷 is an instantiation of a
database, Δ𝐷 are the updates to𝐷 , 𝑞(𝐷) is the prior query results
based on 𝐷 , Δ𝑞 is the modified query that needs to be executed
on Δ𝐷 , and the notation ‘+’ in the expression 𝑞(𝐷) + Δ𝑞(𝐷,Δ𝐷)
refers to the way of combining answers of the two queries to
generate the overall answer to 𝑞 over the modified data.

[20, 36, 42] provide a comprehensive description of how Δ𝑞
can be algebraically derived from 𝑞. Below, to provide intuition,
we provide examples of how operators are transformed. Let Δ𝑅1
and Δ𝑅2 be the set of tuples updated to relations 𝑅1 and 𝑅2,
respectively.
4Though, at times, it may require re-execution of enrichment functions, if the determinization
process requires a probability value from the corresponding enrichment function for the domain
value that has been pruned out. [35] uses a similar strategy compressed representation to store
some tuples (with probability higher than a threshold) of a relation in a faster primary index,
called Uncertain Primary Indexing (UPI), and the remaining tuples in a slower secondary index.
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• Let𝑞 = 𝜎𝐶 (𝑅1), where𝐶 represents a set of selection conditions,
then Δ𝑞 = 𝜎𝐶 (Δ𝑅1), i.e., the selection condition needs to be
applied only on the updated tuples of 𝑅1.

• Let 𝑞 = 𝑅1 ⊲⊳ 𝑅2, then Δ𝑞 = (Δ𝑅1 ⊲⊳ 𝑅2 + 𝑅1 ⊲⊳ Δ𝑅2 + Δ𝑅1 ⊲⊳

Δ𝑅2), i.e., the updated tuples of 𝑅1 needs to be joined with
𝑅2, the updated tuples of 𝑅2 with 𝑅1 and between the updated
tuples of 𝑅1 and 𝑅2.

• Let 𝑞 = 𝛾𝑔 (𝑅), then Δ𝑞 = 𝛾𝑔 (Δ𝑅1), where 𝛾 is an aggregation
function, 𝑔 is a group by attribute. The aggregation function
𝛾𝑔 needs to be applied directly on the updated tuples.
Recall that for each of the above queries, the result of the query

Δ𝑞 needs to be merged with the previous results of the query 𝑞.
Hence, the result of 𝑞(𝐷 +Δ𝐷) is obtained by merging the results
of 𝑞(𝐷) and Δ𝑞(𝐷,Δ𝐷). This post-processing step is performed
by IVM techniques itself in the DBMS. IVM techniques have
been integrated in several popular databases: PostgreSQL [5],
Oracle [7], andAmazon Redshift [6]. IVM implementations can be
more efficient than recomputing the original query. For example,
a rewritten selection query using the above rules requires only
selections to be performed on updated tuples (that may be few),
compared to re-execute selection over the entire table. Likewise,
incremental computation of joins and other operators may be
significantly efficient compared to the naïve implementation.
DBToaster [36] shows ≈90 times improvement for certain queries
in TPC-H benchmark [12], in terms of the number of refreshes
supported by IVM, compared to a full refresh of materialized
view after each update of base tables.

Incremental Processing. Both designs exploit IVM to incre-
mentally compute modified query answers, as enrichments are
performed on the data during epochs. The query execution con-
sists of four steps, discussed in the following subsections. Only
one of the four steps (i.e., query setup) is performed once in the
zero-th epoch 𝑒0 (this is a special epoch where only query setup
is performed), and all other steps are executed iteratively, once
per epoch.

3.3.1 Query Setup. During the query setup, both the loose
and tight designs initialize a materialized view 𝑞𝑣 for the query
𝑞 based on the current state of the database. Results of 𝑞𝑣 are
incrementally updated as more data is enriched in future epochs.

In addition, probe queries 𝑝𝑞(𝑅𝑖 ) (discussed in §2.1) are ex-
ecuted for each relation 𝑅𝑖 ∈ 𝑞. The query 𝑝𝑞(𝑅𝑖 ) needs to be
modified from §2.1 as simply checking if the value of a derived
attribute is not NULL, no longer suffices if a tuple is fully en-
riched. Instead, the probe queries exploit the state of derived
attributes to determine if it can be further enriched. This test
is performed by checking if the sum of the bits in the array of
AjStateBitmap column of a tuple is equal to the length of the
array in AjStateBitmap column.

Example 3.1. Considering the probe query of Figure 2d for
relation 𝑅1, the modified probe query is shown in Figure 3. In the
modified query, if some of the bits in the array ofA1StateBitmap
column of a tuple is not equal to the length of the array in
A1StateBitmap column, then that tuple is not completely en-
riched and hence it is returned in the probe query result. ■

𝜎𝑅1 .𝐴2=𝑎2∧(array_sum(A1StateBitmap)!=array_length(A1StateBitmap))
(𝑅1 ⊲⊳ 𝑅1𝑆𝑡𝑎𝑡𝑒) ⋉𝑅1 .𝐴2=𝑅2 .𝐴4

[
𝑅2 ⋉𝑅2 .𝐴4=𝑅3 .𝐴5

(𝜎 (𝑅3 .𝐴5=𝑎5)∧(array_sum(A1StateBitmap)!=array_length(A1StateBitmap))
(𝑅3 ⊲⊳ 𝑅3𝑆𝑡𝑎𝑡𝑒))

]
Figure 3: Updated probe query for 𝑅1.

PlanSpaceTable. The result of the probe queries are stored in a
table entitled PlanSpaceTable. This table stores a set of candi-
date tuples of relations 𝑅𝑖 ∈ 𝑞 that are considered for enrichment
to answer 𝑞. Rows in PlanSpaceTable correspond to the name
of the relation (𝑅𝑖 ) included in 𝑞, the tuple ID, and the list of
derived attributes for which the tuple needs to be enriched for 𝑞
(see Table 3).
Rel TID Attribute

‘𝑅1’ 1 ‘A1’, ‘A3’
. . .

‘𝑅1’ 100 ‘A1’, ‘A3’
‘𝑅2’ 1 ‘A2’

. . .

‘𝑅3’ 200 ‘A1’, ‘A3’
Table 3: PlanSpaceTable.

Rel TID Attr-FID

‘𝑅1’ 2 ⟨‘A1’, 𝑓2 .id⟩, ⟨‘A3’, 𝑓5 .id⟩
‘𝑅1’ 3 ⟨‘A1’, 𝑓4⟩, ⟨‘A3’, 𝑓6 .id⟩
‘𝑅2’ 1 ⟨‘A2’, 𝑓7 .id⟩
‘𝑅3’ 2 ⟨‘A1’, 𝑓3 .id⟩, ⟨‘A3’, 𝑓5 .id⟩

Table 4: PlanTable.

3.3.2 Enrichment Planning. At the beginning of each epoch,
based on the state of the tuples, both the loose and tight de-
signs move a set of tuples from PlanSpaceTable to a PlanTable
for (potential) enrichment during this epoch. PlanTable con-
tains three columns: RelationName, TID (tuple identifier), and
Attr-FID (stores a list of pairs of name of derived attribute and
enrichment function identifier), which helps for each tuple and
each derived attribute that require enrichment in selecting an
enrichment function. A sample PlanTable in Table 4 is based
on selecting tuples from PlanSpaceTable of Table 3. The cost
of the selected plan is the summation of the cost of enrichment
functions part of PlanTable. Note that for the plan to be valid
(i.e., executable during the epoch), the cost of the selected plan
must be smaller than epoch duration.

In order to populate PlanTable from PlanSpaceTable, we
select a set of ⟨tuple, derived attribute, enrichment function⟩
triplets for enrichment during an epoch. Sample selection meth-
ods have been extensively studied for AQP [14, 30, 45]. In such
systems, typically a random sample of tuples is selected based
on which the approximate aggregate values are computed. Then,
such aggregate values are improved as the system progressively
chooses a larger sample size and computes the aggregate func-
tion on them [30]. Similar to such techniques, we also choose
tuples randomly to enrich during a given epoch. However, in
contrast to AQP, we need to further select a derived attribute
to enrich, as well as, an enrichment function to execute on the
chosen attribute (in case more than one enrichment functions
are available to enrich). We modify the sampling-based selection
policy of AQP for this purpose, leading to three distinct strategies.
In each strategy, the tuples to be enriched are chosen randomly
from PlanSpaceTable by simple random sampling.
Sampling-based Object Ordered (SB(OO)), where we ran-
domly select a derived attribute from the chosen tuples and enrich
it using all the associated functions with the attribute.
Sampling-based Random Ordered (SB(RO)), where we ran-
domly select a derived attribute and randomly select an enrich-
ment function for each of the chosen tuples. The enrichment is
continued until the epoch time is exhausted.
Sampling-based Function Ordered (SB(FO)), where we enrich
each attribute of the chosen tuples based on an ordered execution
of the corresponding functions associated with the attributes. En-
richment functions associated with the attributes are ordered
based on their quality

cost , where quality is measured using any clas-
sifier metrics such as accuracy and cost is measured using the
average execution time of the function per object. This strategy
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⊲⊳
𝑅1 .A1=𝑅2 .A2

𝜎𝑅1 .A1=𝑎1

𝑅1

𝜎𝑅2 .A2=𝑎2∧𝑅2 .A3=𝑎3

𝑅2

(a) Original query.

⊲⊳
𝜔𝑃
⊲⊳ (𝑅1 .A1=𝑅2A2)

𝜔𝑃
𝜎 (𝑅1 .A1)) = 𝑎1

⊲⊳
𝑅1 .𝑖𝑑=𝑃𝑇 1.𝑇 𝐼𝐷

𝑅1 𝜎𝑅𝑒𝑙=′𝑅′
1

PlanTable as PT1

𝜔𝑃
𝜎 (𝑅2 .A2 = 𝑎2) ∧ 𝜔𝑃

𝜎 (𝑅2 .A3 = 𝑎3)
⊲⊳

𝑅2 .𝑖𝑑=𝑃𝑇 2.𝑇 𝐼𝐷

𝑅2 𝜎𝑅𝑒𝑙=′𝑅′
2

PlanTable as PT2

(b) Query used in IVM in the tight design.

Figure 4: The incremental query used by IVM in tight de-
sign.

is motivated by the optimization of multi-version predicates as
proposed in [38].

3.3.3 Computing Progressive Answers. To compute𝑞 pro-
gressively, we need to compute delta answers for 𝑞𝑣 based on
modified data due to enrichment. Computing delta answers in
the tight design is more complex than the loose design, which
we discuss first.
Progressive Answering in the Loose design. This design per-
forms enrichments at the enrichment server and the modified at-
tribute values of enriched tuples are updated in the tables stored
in the DBMS. This update triggers the recomputation of the
query answers at the end of each epoch. The IVM query 𝑞𝑣 is
simply the original query of 𝑞. During each epoch 𝑒𝑘 , the ⟨tuple,
derived attribute, enrichment function⟩ triplets of PlanTable
are executed, followed by the execution of appropriate deter-
minization function DET . The resulting updates are reflected in
the database by replacing the current values of the derived at-
tributes of enriched tuples based on the functions executed upto
that time. Hence, the determinized representation of the data-
base changes from 𝐷𝐸𝑇 (𝑠𝑡𝑎𝑡𝑒 (𝐷, 𝑒𝑘−1)) to 𝐷𝐸𝑇 (𝑠𝑡𝑎𝑡𝑒 (𝐷, 𝑒𝑘 )).
Such an update, triggers IVM to update the materialized view
based on Δ𝐷 that consists of all the changes that took place in
𝑒𝑘 (i.e.,

[
𝐷𝐸𝑇 (𝑠𝑡𝑎𝑡𝑒 (𝐷, 𝑒𝑘 )) -𝐷𝐸𝑇 (𝑠𝑡𝑎𝑡𝑒 (𝐷, 𝑒𝑘−1))

]
). Specifically,

Δ𝑞(DET (𝐷, 𝑒𝑘−1),DET (Δ𝐷)) is executed to compute𝑞(DET (𝐷, 𝑒𝑘 )),
i.e., the query result at the end of epoch 𝑒𝑘 .
Progressive Answering in the Tight Design. The enrichment
of tuples are performed within the query 𝑞 as part of the UDF
execution. Therefore, enrichment of tuples and the subsequent
updates to state tables can not be used to trigger the incremental
evaluation. To overcome this, the tight design uses the updates to
PlanTable to trigger the incremental evaluation of query results.

In particular, the query 𝑞 is rewritten to use PlanTable as fol-
lows: all relation𝑅𝑖 ∈ 𝑞, that require enrichment,𝑅𝑖 is replaced by
the expression :𝑅𝑖 ⊲⊳Ri .TID=PlanTable.TID (𝜎RelName=‘𝑅𝑖 ’ (PlanTable)).

Example 3.2. Consider the query of Figure 4a. The tuples of
both 𝑅1 and 𝑅2 require enrichment because of the conditions
on A1 and A2. In the rewritten query of 𝑞 to support incre-
mental evaluation, both relations are joined with PlanTable, as
shown in Figure 4b (other rewrites of selection and join condi-
tions are denoted as 𝜔𝑃

𝜎 and 𝜔𝑃
⊲⊳ will be clear soon). Suppose

in 𝑒𝑘 , a ⟨tuple, derived attribute, enrichment function⟩ triplet is
added to PlanTable where the tuple belongs to relation 𝑅1. The
addition of this triplet triggers a view update as PlanTable is
part of the view definition in Figure 4b. ■

In the tight design, each relation 𝑅𝑖 is joined with the plan
table to determine the set of enrichments to be performed during

each epoch. We could potentially reduce the cost of such a join
by maintaining plan tables associated with each table separately
and joining the relation with its associated plan table. Since plan
tables are relatively small (less than 0.1% in size of the database
in our experiments), we maintain a single plan table for all the
relations.

While the approach to create𝑞𝑣 by rewriting𝑞 using PlanTable
results in desired incremental updates, it suffers from a subtle
complexity. Specifically, for a given tuple 𝑡 , when enrichment
functions execute, the change in the state table, results in a new
determinized value for the derived attribute 𝑡 .A 𝑗 in 𝑅. If we up-
date the current value of 𝑡 .A 𝑗 in 𝑅, the change would cause the
refresh to the view to cascade resulting in a duplicate update to
the results. To see this, consider the following example.

Example 3.3. In Example 3.2, suppose a row ⟨𝑡,A𝑖 , 𝑓𝑗 ⟩ where
𝑡 ∈ 𝑅 is added to PlanTable in epoch 𝑒𝑘 . Hence, the incremental
query execution is triggered. During the execution of incremental
query, enrichment function is executed on 𝑡 and the condition
of (𝑅.A1 = 𝑎1) is evaluated on it. As a result, the state of 𝑡 and
the determinized value of 𝑡 .A1 is updated. Now, if we update
the new attribute value of 𝑡 in 𝑅, it will cause another trigger
to incremental query execution (as 𝑅 is part of the 𝑞𝑣 ), causing
duplicate results. ■

To prevent such a situation, we cannot update the value of
attribute 𝑡 .A 𝑗 directly during the execution of 𝑞𝑣 . We instead
store the value of determinized representation of 𝑡 .A 𝑗 separately
as part of state table 𝑅𝑖State. To do so, we extend the schema
of 𝑅𝑖State to include a new field A 𝑗Value for each derived
attribute in 𝑅𝑖 . 𝑅𝑖State, thus, contains three fields: A 𝑗Bitmap,
A 𝑗Output, and A 𝑗Value, for attribute A 𝑗 .

Since the value of a derived attribute is not modified in place,
we need to define additional UDFs for 𝑞𝑣 to read the value of
A 𝑗 . Note that if A 𝑗 is modified (due to enrichment), its value
resides in the A 𝑗Value column of 𝑅𝑖State table. Otherwise, if
A 𝑗 is not modified in an epoch, its most recent value is available
in A 𝑗 column of table 𝑅𝑖 . To enable 𝑞𝑣 to correctly retrieve the
value of A 𝑗 , we define two UDFs of CheckState and GetValue as
described below.

CheckStateCheckStateCheckState UDF: This UDF checks if a tuple was enriched for a
particular derived attribute present in the query. The input to
the UDF is a relation name, a derived attribute name, a tuple
identity, and Attr-FID value retrieved from PlanTable for the
corresponding tuple. Attr-FID column of PlanTable, is used
to get the enrichment function that needs to be executed. If
that enrichment function was executed before, then it returns
true, otherwise it returns false. Note that CheckState retrieves
this information from the state bitmap column of the derived
attribute in the state table §3.2.

GetValueGetValueGetValue UDF: This UDF retrieves the latest value of a derived
attribute for a tuple. It takes as input a relation name (e.g., ‘𝑅′

𝑖
),

attribute name (e.g., ‘A 𝑗 ’), and tuple identity and returns the
determinized value ofA 𝑗 stored inA 𝑗Value column of 𝑅𝑖State
table.

Apart from the above two UDFs, we further need to appro-
priately modify the read𝑢 function shown in §2.2 (that enriches
derived attributes as a side effect of reading them) to account
for the way the state and data value are stored when multiple
enrichment functions can be associated with a derived attribute.
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Modified read𝑢read𝑢read𝑢 UDF: Given a tuple, a derived attribute A 𝑗 , and
an enrichment function, the modified read𝑢 UDF executes the en-
richment function on the tuple, updates the state, and returns the
determinized representation of the tuple for the derived attribute.

The modified read𝑢 UDF takes the following inputs: the name
of the relation, name of the derived attribute, the tuple iden-
tity, and the list of ⟨derived attribute, function ID⟩ pairs (stored
in Attr_FID column of PlanTable). It executes the enrichment
function on the tuple (parsed from Attr_FID), updates the state,
and returns the derived attribute value. In state table, it updates
the state bitmap, state output, and attribute-value columns. The
state-bitmap and state-output are set as the bit and the output of
the executed enrichment function. The attribute-value is updated
by the latest determinized representation of derived attribute as
returned by read𝑢 UDF.

Selection Query. The selection conditions are rewritten to check
if the derived attribute was enriched during the epoch from state
table (enrichment is only performed if the enrichment function
was not executed earlier). This is checked by CheckState and
GetValue UDFs defined earlier. The complete rewrite logic of a
selection condition (𝜔𝑃

𝜎 (𝑅.A𝑖 op 𝑎𝑖 )) is presented below:[
CheckState (‘𝑅’, ‘A𝑖 ’, 𝑅.𝑖𝑑,Attr_FID) /* A𝑖 is enriched.*/

∧ GetValue (‘𝑅’, ‘A𝑖 ’, 𝑅.𝑖𝑑) op 𝑎𝑖
]

∨
[
!CheckState (‘𝑅’, ‘A𝑖 ’, 𝑅.𝑖𝑑,Attr_FID) /* A𝑖 is not enriched.*/

∧ read𝑢 (‘𝑅’, ‘A𝑖 ’, 𝑅.𝑖𝑑,Attr_FID) op 𝑎𝑖
]

The rewritten condition first checks if the tuple is already en-
riched for a derived attribute A𝑖 using CheckState UDF. If it is
enriched, then the GetValue UDF retrieves the attribute value
and the selection condition is checked. If a tuple is not enriched
before, then read𝑢 UDF is executed on the tuple and the selection
condition is checked based on the output of read𝑢 UDF.

Join Query. The rewrite logic for join condition is shown be-
low (i.e., for 𝜔𝑃

⊲⊳ (𝑅𝑝 .A𝑖 op 𝑅𝑞 .A 𝑗 )). Given a join condition of
(𝑅𝑝 .A𝑖 op 𝑅𝑞 .A 𝑗 ), for a tuple pair, the rewritten condition first
checks if both the derived attributeswere enriched (i.e.,CheckState
returning true for both tuples). If they were, then the join con-
dition is checked on the output of the GetValue function as it
returns the latest attribute value of the tuples. In the second and
third conditions, only one tuple of the tuple pair was enriched.
For the tuple that was enriched before, the value is retrieved
using GetValue UDF. The other tuple is enriched first using read𝑢
UDF and then the join condition was checked. In the fourth condi-
tion, both the tuples were not enriched. Hence, both tuples were
enriched using read𝑢 UDF and then join condition was checked.

[
CheckState (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑,Attr_FID)
∧ CheckState (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑,Attr_FID) /* Both of A𝑖 and A 𝑗 are enriched*/

∧ GetValue (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑) op GetValue (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑)
]

∨
[
CheckState (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑,Attr_FID)
∧ ! CheckState (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑,Attr_FID) /* Only A𝑖 is enriched.*/

∧ GetValue (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑) op read𝑢 (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑,Attr_FID)
]

∨
[
! CheckState (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑,Attr_FID)
∧ CheckState (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑,Attr_FID) /* Only A 𝑗 is enriched.*/

∧ read𝑢 (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑,Attr_FID) op GetValue (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑)
]

∨
[
! CheckState (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑,Attr_FID)
∧ ! CheckState (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑,Attr_FID) /* None of A𝑖 and A 𝑗 are enriched.*/

∧ read𝑢 (‘𝑅𝑝 ’, ‘A𝑖 ’, 𝑅𝑝 .𝑖𝑑,Attr_FID) op read𝑢 (‘𝑅𝑞 ’, ‘A 𝑗 ’, 𝑅𝑞 .𝑖𝑑,Attr_FID)
]

Example 3.4. Considering the query of Figure 4a, the rewritten
query of 𝑞𝑣 is shown in Figure 4b. In 𝑞𝑣 , the selection and join
conditions are rewritten using the rewrite logic of 𝜔𝜎 and 𝜔⊲⊳

and contains PlanTable as we described above. In an epoch 𝑒𝑘 ,
when a set of ⟨tuple, derived attribute, enrichment function⟩
triplets are added to PlanTable, a re-execution of query 𝑞𝑣 is
triggered. During the execution of𝑞𝑣 , the enrichment of triplets in
PlanTable take place and the state of the tuples are updated (i.e.,
using read𝑢 UDF), and IVM maintained for query 𝑞𝑣 is updated.
Hence, the delta query used to compute the delta changes to the
result of 𝑞 at the end of each epoch 𝑒𝑘 is created using the same
query of 𝑞𝑣 . ■

3.3.4 Fetching Results. In both the loose and tight designs,
users can fetch complete query results at the end of an epoch by
querying the IVM. If the complete answer set is large, users can re-
trieve delta changes of answers, i.e., inserted/deleted/updated tu-
ples from the previous epoch. The current implementation allows
users to fetch delta answers only from the last epoch. Fetching
delta answers from any arbitrary epoch using a cursor is complex
(will be supported in a future version), since the query processing
in both designs are not demand-driven, as in SQL databases. The
refined answers due to Δ𝑞(DET (𝐷, 𝑒𝑘−1),DET (Δ𝐷)), may result
in retraction of previously returned tuples, or addition of new
tuples, or updates to the previously reported answers.

3.3.5 Handling Updates. For updates that are not conflict-
ing with any query (i.e., the updated tuples that were not part of
the result of the probe queries of the queries that were executing
at the time the tuples were updated), we simply reset the state, i.e.,
set the state-bitmap for that tuple to all zeros. Updates that are
conflicting with queries can also be handled by the techniques
but require implementation changes that are out of scope for this
paper.

3.3.6 Implementation Details. The tight design is imple-
mented using Apache MADlib [31] and the open-source IVM
implementation of PostgreSQL [5]. The loose design is imple-
mented using Python and the IVM implementation of PostgreSQL.
In tight design, MADlib provides several SQL-like constructs
through which users can train ML models on the data stored in
the database and use the trained model for inference. We added
a new progressive module in the MADlib codebase to imple-
ment the tight design. The progressive module provides UDFs
that allows users to specify derived attributes, associate enrich-
ment functions (learned using MADlib or other PL/pgSQL and
PL/Python UDFs) with the derived attributes. The progressive
module implements the UDFs of read𝑢 , CheckState and GetValue
UDFs. The queries are wrapped using a stored procedure called
executor that rewrites the query as an IVM, creates the plan ta-
ble and plan space table. In each epoch, the executor generates
the enrichment plan, populates the plan table, and executes the
enrichment functions according to the plan.

4 COMPARISON BETWEEN THE DESIGNS
While loose design enriches tuples prior to query processing (by
identifying tuples that might need to be enriched using probe
queries), the tight design enriches tuples during query process-
ing when the need to enrich the tuple arises. Tight design may
perform lesser number of enrichments since tuples may get elim-
inated during query processing and, thus, do not need to be
enriched. As an example, consider a conjunctive selection query
on derived attributes A1 and A2. Now, the tight design, after
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Relation #tuples Size(GB) Derived attrs. Functions used

TweetData 11M 10.5 sentiment(3) GNB,KNN,SVM,MLP
topic(40) GNB,KNN,LDA,LR

MultiPie[51] 500K 84.5 gender(2) DT,GNB,KNN,MLP
expression(5) DT, GNB, RF, KNN

Table 5: Datasets used in experiments.

enriching attribute A1 of a tuple, will not enrich A2 of the tuple
if the tuple does not satisfy the selection condition on A1. Also,
compared to the tight design, the loose design incurs overhead of
moving data from DBMS to an enrichment server and vice versa.
Such benefits, that are more pronounced when enrichment is
expensive, are validated by experiments in §5. Query execution
time in the tight design can be further improved by reducing UDF
execution cost. Recent research optimized queries with UDFs by
executing them on a batch of tuples [53], inlining [48], or execut-
ing in parallel. E.g., [48] introduces new algebrization techniques
for different types of statements present in a UDF such as DE-
CLARE, SET, IF/ELSE statements. This technique converts a UDF
call to a single relational expression that is semantically equiv-
alent to the original UDF. Such optimizations can be applied to
optimize the tight design further.

While the loose design incurs overhead due to higher number
of enrichment and data movement, it has certain advantages
over tight design. The rewritten queries in the tight design are
significantly more complex than the loose design, e.g., in the
tight design, join conditions in the rewritten query can contain
complex disjunctions and UDFs. This makes queries harder to
optimize by the standard DBMS optimizers. Different DBMSs
provide different optimization supports for UDFs. Systems such
as PostgreSQL allows specification of execution cost per tuple
of a UDF, which is factored into the plan by the query optimizer.
E.g., if a UDF is expensive it may be pulled up in the tree [32].
Disjunctions in the rewritten query may also affect the choice of
join algorithm chosen by the optimizer in the query plan. The
DBMS may choose to implement the join using a nested loop
join while the corresponding join in the plan associated with the
original query (which is used in the loose design) may use a hash
join instead. Thus, the loose and tight designs offer a tradeoff
of reduced enrichment cost and reduced data movement versus
possibly complex queries that are harder for existing DBMS to
optimize. We study such a tradeoff in the experiments of §5.

5 EXPERIMENTAL EVALUATIONS
This section evaluates the performances of both the loose and
tight designs. We address the following questions:
• How much does the tight design save enrichment of tuples
compared to the loose design ?

• How does progressive query processing benefit as compared to
completely enriching data before queries ?

• What are the overheads of the designs ?
• How do enrichment plan generation strategies affect progres-
sive query processing ?

5.1 Experimental Setup
Datasets.We used two datasets: (i) TweetData collected using
APIs with 11 million rows, two derived attributes: ⟨sentiment
and topic⟩, and six fixed attributes: ⟨tid, UserID, Tweet, feature,
location, and TweetTime⟩ (ii) MultiPie [51] dataset with 500K
facial images, two derived attributes: ⟨gender and expression⟩,
and five fixed attributes: ⟨ImageID, UserID, CameraID, Image,
and ImageTime⟩ (see Table 5).

Q1 SELECT * from MultiPie where gender=1 and CameraID < 𝑐1
Q2 SELECT * from MultiPie where gender = 1 and expression = 2 and

CameraID < 𝑐1
Q3 SELECT tid, UserID, Tweet, location, TweetTime from TweetData

where sentiment = 𝑠1 and topic = 𝑡1 and TweetTime between(𝑡1,𝑡2)
Q4 SELECT * from TweetData T1, TweetData T2 where T1.sentiment

= T2.sentiment and T1.topic = T2.topic and T1.TweetTime
between(𝑡1,𝑡2) and T2.TweetTime between (𝑡1, 𝑡2)

Q5 SELECT * from MultiPie M1, MultiPie M2 where M1.expression =
M2.expression and M1.gender = M2.gender and M1.CameraID < 𝑐1
and M2.CameraID < 𝑐1

Q6 SELECT * from MultiPie M1, MultiPie M2 where M1.gender =
M2.gender and M1.expression = 1 and M2.expression = 2 and
M1.CameraID < 𝑐1 and M2.CameraID < 𝑐1

Q7 SELECT * from TweetData T1, State S where T1.location = S.city
and S.state=‘California’ and T1.sentiment = 1 and T1.TweetTime
between(𝑡1,𝑡2)

Q8 SELECT * from TweetData T1, TweetData T2, State S where
T1.sentiment = T2.sentiment and T1.topic = T2.topic and T1.location
= S.city and S.state=‘California’ and T1.TweetTime between(𝑡1,𝑡2)

Q9 SELECT topic, count(*) from TweetData where T1.TweetTime
between(𝑡1,𝑡2) group by sentiment

Table 6: Query templates.

Enrichment Functions. We used the following probabilistic
classifiers as enrichment functions: Gaussian Naïve Bayes (GNB),
Decision Tree (DT), Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), Multi-Layered perceptron (MLP), Linear Dis-
criminant Analysis (LDA), Logistic Regression (LR), and Ran-
dom Forest (RF). GNB classifier was calibrated using isotonic-
regression model [58], and other classifiers were calibrated using
Platt’s sigmoid model [46] during cross-validation to output prob-
ability distribution.
Queries. Table 6 shows nine queries, where Q1-Q3 are selec-
tion queries, Q4-Q8 are join queries, and Q9 is an aggregation
query. For experiment 2 we used Q2,Q3, and Q4, and for ex-
periment 6 second part, we used Q3 that contained a derived
attribute with a large domain size. The remaining experiments
use all the queries.

5.2 Experimental Results
We setup PostgreSQL database on an AWS server with 16 core
2.50 GHz Intel Xeon CPU, 64GB RAM, and 1TB SSD. We used
another server with same configuration as the enrichment server
in loose design. Enrichment functions were implemented as Post-
greSQL UDFs in the tight design and as Python functions in the
loose design.

5.2.1 Query time VS Complete Enrichment. To compare the
query time approach of both the loose and tight designs against
the strategy of complete enrichment before query execution (re-
ferred to asBaseline), we usedMLP for sentiment (100ms/tweet),
GNB for topic (125 ms/tweet), MLP for gender (1536 ms/image),
and RF for expression attribute (1380 ms/image). Enriching all
11M tweets of TweetData table for both topic and sentiment
attributes takes ≈43 hours5. While 43 hours, at first glance, may
seem surprisingly high, we note that prior work (e.g., [24]) has
also reported similar run times of inferences on tweets for senti-
ment analysis. For the Sentiment140 dataset [29] with 1.6 million
5We experimentally measured the runtime of enrichment functions in the tweet
dataset for 1 million tweets. The total time taken was 3 hours 55 minutes. Since
the dataset had 11 million tweets, we multiplied the run time by a factor of 11.
Hence, the total run time of complete enrichment was: 11×(3 hours 55 minutes) ≈
43 hours.
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Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Baseline 500K 1M 22M 22M 1M 1M 11M 22M 11M
Loose 10K 20K 200K 200K 20K 20K 4K 120K 100K
Tight 10K 13K 164K 127K 12K 12K 4K 114K 100K

Table 7: Exp 1. Number of enrichments in the loose and
tight designs, and Baseline approach that enriches data com-
pletely.

tweets, the sentiment analysis time is reported as 1 hour 48 min-
utes which is equivalent to 12.38 hours for 11 million tweets.
While [24] only considers a single enrichment – sentiment analy-
sis, if we further perform topic analysis (and that too with a larger
number of features than that was used in [24]) it will take ≈43
hours to fully enrich the data. Similarly, the complete enrichment
of MultiPie data takes ≈26 hours.

Exp 1: Number of enrichments. Table 7 shows the number of
enrichments in the Baseline approach, and the loose and tight de-
signs. Both designs perform significantly better than the Baseline
approach. The tight design enriches the same or less number
of tuples than the loose design it exploits query semantics to
avoid redundant enrichments. For queries with multiple predi-
cates (i.e., Q2-Q6 and Q8) on derived attributes, the tuples that
did not satisfy a subset of query predicates were not enriched
for the remaining derived attributes in the tight design, resulting
in the savings in enrichment from the loose design. However, in
Q1, Q7, and Q9, the number of enrichments were same in both
designs, as Q1 and Q7 had a single predicate on derived attribute
and Q9 was an aggregation query with a selection condition on
a fixed attribute.

Number of enrichments with varying selectivity. We de-
fine selectivity as the ratio of input-cardinality to the output-
cardinality of a predicate. We used Q3 where we changed the
predicate of topic to control the selectivity of probe queries. Ta-
ble 8 shows that as the predicate selectivity increases (i.e., passes
fewer input tuples), the savings in terms of enrichment for both
designs increase from the Baseline approach. The tight design
outperforms the loose design more, when selectivity increases,
since all tuples that do not satisfy the predicate of (topic ≤ 𝑘)
are not further enriched for attribute of sentiment. In the loose
design, increasing selectivity does not reduce the number of en-
richments, as all the tuples that were part of the probe query
result are enriched for all derived attributes present in the origi-
nal query. Thus, for highly selective predicates, the tight design
performs better than the loose design, and both designs perform
significantly better than Baseline for high selectivity values (i.e.,
1% and 10%).
Comparison with Eager Enrichment. In this experiment, we
ran multiple instances of Q3 one after the other. For each instance
of Q3, we randomly picked the value of the time interval predicate
such that the query selectivity remains 0.1% of the data, i.e., ≈
10,000 tweets/query. The time interval is chosen randomly so
that the overlap (common tweets) between the query instances
remain random. Figure 5 plots the cumulative query execution
time of multiple instances of Q3 using query time enrichment
and the eager approach of complete enrichment at ingestion. As
shown in the figure, the query time approach of enrichment has a
very low cumulative execution time compared to eager approach
when a lower number of queries covering a small portion of the
data are executed. When the number of executed queries are
executed become large (i.e., queries cover most of the data), the

Approach Selectivity topic
≤ 10

topic
≤ 20

topic
≤ 30

topic
≤ 40

Baseline 1% 22M 22M 22M 22M
Loose 1% 20K 20K 20K 20K
Tight 1% 11.4K 14.7K 15.4K 16.8K
Baseline 10% 22M 22M 22M 22M
Loose 10% 200K 200K 200K 200K
Tight 10% 100.1K 103.9K 104.6K 139K
Baseline 100% 22M 22M 22M 22M
Loose 100% 22M 22M 22M 22M
Tight 100% 11.16M 12.14M 13.6M 15.8M

Table 8: Exp 1. Number of enrichments performed in the
loose and tight designs as compared to Baselinewith varying
selectivity of the fixed condition (i.e., TweetTime) in Q3.

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Loose 378 684 1291 1319 736 705 32 910 652
Tight 306 572 944 905 627 582 28 924 612

Table 9: Exp 1. Query latency (in seconds).

cumulative cost becomes equal to the cost of eager approach.
Hence, the query time approach remains a much better choice
than the eager approach over a large number of queries. Even in
the scenario where the queries covered all the data, the query
time approach performs as good as the enrichment at ingestion
approach.
Execution time/Server load. Table 9 shows the latency of
queries Q1 to Q9 in the loose and tight designs, where latency
is the average execution time of 50 queries generated from each
template of Table 6. E.g., we chose 50 queries of 𝑄2 by setting
different values in the condition on CameraID attribute. The la-
tency of queries in both designs are much lower (i.e., two orders
of magnitude lower) than the time required to completely enrich
the datasets (i.e., 43 hours for tweet datasets and 26 hours for
Multipie dataset).

The latency difference between the tight and loose design
arise due to three reasons: (i) the number of enrichments (shown
in Table 7), (ii) the data movement cost — transfer of data from
DBMS to the enrichment server vice versa (see Table 11), and (iii)
UDF invocation cost. Table 11 shows the details of time spent
in the enrichment server, in the DBMS, and the time spent in
transferring the data between the two servers in the loose design.
As expected, the majority of the query execution time is spent
at the enrichment server for all queries. In Q2-Q6, the loose
design has higher latency due to more enrichments performed
by it (see Tables 7 and 11). Furthermore, due to additional data
transfer cost, the total time in the loose design is higher than
the tight design even for queries that have the same number of
enrichments in both designs, i.e., Q1, Q7, and Q9 (see Table 11).
Additionally, observe that for Q1, Q7, and Q9, the enrichment
costs in the loose design is slightly lower than the tight design
since, the enrichment functions are executed in batch in the loose
design as compared to the execution of enrichment function
UDFs on single rows in the tight design. When we executed the
python UDF for sentiment detection on a batch of 1000 tweets, the
average execution time of the UDF per tweet was 7.46 ms/tweet.
In contrast, the average execution time of PostgreSQL UDF was
7.72 ms/tweet which led to the performance difference.

For Q8, while the number of enrichments performed by both
the loose and tight designs are identical (see Table 7), loose design
performs better than the tight design. For Q8, in the tight design,
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Figure 5: Exp 1. Cumulative time taken by the query time
approach as compared to the eager approach for Q3.

the optimizer is not able to optimize the rewritten join condition
with UDFs and disjunctions (discussed in §3.3.3) and uses a nested
loop join instead of a hash join. However, in loose design, the
optimizer is able to use hash join since the queries run on the
underlying database do not have any UDFs.

5.2.2 Progressiveness. This section considers all enrich-
ment functions for the derived attributes as shown in Table 5.
We present progressive quality improvement of queries Q1-Q9 in
two ways: (i) plotting the quality of query results with respect to
time and (ii) quantifying the quality improvement over time us-
ing a metric of progressive score, denoted by PS. This metric was
used in previous literature to measure progressiveness [16, 44].

PS(Ans(𝑞, 𝐸)) =
|𝐸 |∑
𝑖=1

𝑊 (𝑒𝑖 ) · [Q(Ans(𝑞, 𝑒𝑖 )) − Q(Ans(𝑞, 𝑒𝑖−1))]

(1)
where, 𝐸 = {e1, e2, . . . , ez} be the epochs, W (ei) ∈ [0, 1] is the
weight allotted to epoch 𝑒𝑖 , W (ei) > W (ei+1), i.e., initial epochs
have higher weights, Q is the quality of query answers, and
[Q(Ans(𝑞, 𝑒𝑖 )) −Q(Ans(𝑞, 𝑒𝑖−1))] is the improvement in the qual-
ity of answers occurred in the epoch 𝑒𝑖 . We chose a linearly de-
creasing function with a negative slope of 0.05 to assign weights
to epochs.

In the remaining experiments, we evaluate the progressive
versions of the loose and tight design.

Exp 2: Progressiveness of different queries. Figure 7 eval-
uates the designs in terms of progressive quality improvement
achieved. Figures 7(a), 7(c), and 7(d) show the results for queries
Q2, Q3, and Q4 where the quality of answers is measured us-
ing normalized 𝑭1 measure i.e., 𝐹1/𝐹𝑚𝑎𝑥

1 , where 𝐹𝑚𝑎𝑥
1 is the

maximum 𝐹1 measure achieved during query execution by both
the designs. Figure 7(b) shows the quality of answers when all
enrichment functions used same machine learning algorithm but
with different complexities, i.e., random forest classifiers with 5,
10, 15, and 20 base classifiers. The 𝐹1 measure is calculated based
on the ground truth data available for the datasets. For aggrega-
tion query, the quality is measured using normalized root mean
square error (RMSE) from the actual aggregated value calculated
from the ground truth. For the aggregation query containing a
group-by condition on a derived attribute (e.g., Q9), the RMSE is
computed by measuring the deviation for each groups, comput-
ing their squares, adding the squares, and finally dividing by the
number of groups. We plot normalized measures as a function of
time to emphasize the rate at which the quality of query results
are improved across different queries and datasets, instead of
actual 𝐹1-measures. Actual 𝐹1-measure (or RMSE) varies across

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
Loose (DBMS) 3 4 9 11 6 5 2 14 7
Loose (Network) 72 72 37 37 72 72 3 44 37
Loose (ES) 303 608 1245 1271 658 628 27 852 608
Tight (DBMS) 306 572 944 905 627 582 28 924 612

Table 11: Exp 1. Times spent in enrichment server(ES) and
DBMS in seconds.

different queries based on the quality of classifiers chosen for en-
richment (e.g., maximum 𝐹1 measures for queries were: Q1 0.73,
Q2 0.81, Q3 0.74, Q4 0.89, Q5 0.78, Q6 0.83, Q7 0.82, Q8 0.79, and
minimum RMSE for Q9 was 6.58 that was reduced from 132.6).

Figure 7 shows that both the designs achieve a high-quality
improvement within the first few epochs of query execution.
Figure 7(b) shows that even when the enrichment functions use
the same algorithm, both designs achieve progressive improve-
ment in the quality of the query results. The progressive scores
achieved for queries (measured by Equation 1) are presented in
Figure 6. The tight design achieves a higher progressive score
as the number of redundant enrichment is lower than the loose
design. This experiment highlights the benefit of progressive
query processing that achieves high-quality results within a few
epochs, without the need of complete enrichment. The progres-
sive scores in Figure 6 for the loose and tight designs are similar,
as the slope set in the progressive score was low (i.e., 0.05). If a
steeper function is used, then the difference becomes larger.

Exp 3: Effect of Different Plan Generation Strategies. Fig-
ure 8 studies different plan generation strategies (as described
in §3.3.2) and their impact on progressiveness. Figure 8 plots
progressive improvement of quality for three queries: Q2, Q3,
and Q4. The results for other queries (i.e., Q1, Q5-Q9) are similar
and reported in [1]. Figures 8(a), 8(b), and 8(c) show that SB(FO)
performs the best and SB(OO) performs the worst since SB(FO)
chooses functions based on the criteria of quality

cost . It allows SB(FO)
to select the functions with highest ratio of quality and cost to
enrich tuples in the beginning before selecting other functions.
In contrast, SB(OO) selects all enrichment functions of a given
attribute that results in the enrichment of only a small number
of tuples in an epoch. SB(RO) performs marginally better than
SB(OO), because of the randomness in the choice of enrichment
functions and derived attributes.

5.2.3 SystemOverhead. Wemeasure the overhead incurred
by progressive query processing in both the loose and tight de-
signs.

Exp 4: Time overhead measures the amount of time spent in
non-enrichment tasks, i.e., query setup, plan selection, delta com-
putation, state update, and UDF invocation to compare against
the time involved in data enrichment. The UDF invocation over-
head only exists in tight design as enrichment function UDFs
are executed on a single row as compared to the batched execu-
tion in the loose design. Particularly, across all epochs, the total
time in query setup, plan selection, delta answer computation,
state update, and UDF invocation took at most 3s, 4s, 5s, 17s,
and 12s respectively, while the total time spent across all epochs
in enrichment was 1000s (i.e., almost 3% of the total time was
spent in overhead). This result shows that both the loose and
tight designs have low overhead of the non-enrichment tasks
performed during query processing. Furthermore, we measured
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Figure 6: Exp 2. Progressive
scores of both designs.
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Figure 7: Exp 2. Progressiveness achieved in the loose and tight designs for (a) Q2, (b)
Q2 (enrichment functions with same algorithm), (c) Q3, and (d) Q4.

State Cutoff State size (GB) Progressive Score
0.4 1.4 0.802
0.6 0.9 0.800
0.8 0.7 0.710

Table 10: Exp 5. Effect of state cutoff in state table
size and the query performance for Q3.

Figure 8: Exp 3. Comparing different plan generation strategies in
the tight design: (a) Q2, (b) Q3, (c) Q4 (left to right).

the improvement due to the usage of IVM in both designs. Com-
puting the queries from scratch at the end of each epoch resulted
in an overhead of 90 seconds for Q7 as compared to the time of
17 seconds due to the usage of IVM.

Exp 5: Storage overhead measures the size of all temporary ta-
bles (PlanSpaceTable and PlanTable), IVM, and the state tables
used during query processing to compare against the size of data
tables. The maximum storage overheads of PlanSpaceTable,
PlanTable, and IVM at any epoch for the queries of Q1-Q9 were
1.48 MB, 56 KB, and 1.2 MB respectively. The state table sizes
for TweetData and Multi-Pie were 2.4 GB and 500 MB, respec-
tively, which are much smaller than the data tables (of 10.5GB
and 84.5GB, respectively). Furthermore, using the state cutoff
(§3.2) strategy, state storage overhead was reduced significantly.
For TweetData, the state overhead was reduced from 2.4 GB
(22.9% of the size of TweetData) to 0.9 GB (i.e., 8.6% of the size
of TweetData), due to the large domain size (i.e., 40) of topic
derived attribute.

For Topic attribute, we vary the value of cutoff-threshold
and examine its effect of it on the query performance for only
Q3. Table 10 shows the results. Observe that setting a very high
threshold (i.e., 0.8) results in a low storage overhead (i.e., 0.7
GB) of the state table , (but requires re-execution of enrichment
functions when queries are posted on the attribute values whose
values are not stored in the state table). Hence, it also reduces
progressive score (i.e., 0.802 to 0.710) due to more enrichments.

6 RELATEDWORK
Our approach of hiding increased query-time latency due to
enrichment at query time, by exploiting progressive computation
is motivated by AQP systems as discussed in §1 and §3.

Similar works have also been proposed in the past but in a
different context of entity resolution [17, 22, 28, 49]. They showed
that the query context can be used to eliminate the cleaning of
object blocks (residing in the disk) that cannot satisfy the query
predicates. [17] utilized an approximate statistic for the objects
residing in each disk block. Such statistics are used during query
processing to dictate the cleaning tasks. In contrast, we consider
a general class of enrichment functions with deterministic as well
as probabilistic outputs. We consider state management of tuples
that were enriched in the context of previous queries resulting

in the elimination of repeated execution of enrichment functions.
Furthermore, such frameworks do not consider a progressive
approach to query processing when the cost of cleaning functions
is high.

Several systems in the past have employed a tightly coupled
approach, where application code is pushed down to the DBMS as
UDFs [10, 31, 52]. Systems implemented using a loosely coupled
approach are also common, where the system was portable to
any database system [14, 18, 45].

7 CONCLUSION
In this paper, we proposed a new data management system that
supports enrichment during query processing. We explore two
different layered architectures for integrating enrichment into
query processing: a loosely coupled design where enrichment
is performed outside of the DBMS, and a tightly coupled design
where enrichment is performed within the DBMS. Both data
enrichment strategies come with progressive query processing
mechanism. Experimental results on real datasets show the effi-
cacy of both architectures over the naive strategy of complete
enrichment and then highlights the tradeoff between the two
architectures. When the queries are complex and enrichment
costs are the same between the loose and tight designs, the loose
design is preferable. In contrast, when the enrichment functions
are complex, tight design outperforms due to the saving in en-
richment by exploiting query semantics. This paper provides
experiments only for single block SPJAG queries. While our ap-
proach applies to other types of queries including nested queries,
we are restricted by the open-source implementation of Incre-
mental View Materialization (IVM) of the chosen DBMS that
only supported single block SPJAG queries. In the future, if the
IVM supports nested queries, our implementation will be able to
support such queries. Further, the implication of both the loose
and tight designs to transactions and mechanisms to leverage en-
richment due to concurrent execution of queries are interesting
directions of future exploration.
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