
FLIRT: A Fast Learned Index for Rolling Time frames

Guang Yang∗

Imperial College London
London, United Kingdom

guang.yang15@imperial.ac.uk

Liang Liang∗

Imperial College London
London, United Kingdom

liang.liang20@imperial.ac.uk

Ali Hadian
Imperial College London
London, United Kingdom
hadian@imperial.ac.uk

Thomas Heinis
Imperial College London
London, United Kingdom
t.heinis@imperial.ac.uk

ABSTRACT

Efficiently managing and querying sliding windows is a key com-
ponent in stream processing systems. Conventional index struc-
tures such as the B+Tree are not efficient for handling a stream
of time-series data, where the data is very dynamic, and the in-
dexes must be updated on a continuous basis. Stream processing
structures such as queues can accommodate large volumes of
updates (enqueue and dequeue); however, they are not efficient
for fast retrieval.

This paper proposes FLIRT, a parameter-free index structure
that manages a sliding window over a high-velocity stream of
data and simultaneously supports efficient range queries on the
slidingwindow. FLIRT uses learned indexing to reduce the lookup
time. This is enabled by organising the incoming stream of time-
series data into linearly predictable segments, allowing fast queue
operations such as enqueue, dequeue, and search. We further
boost the search performance by introducing two multithreaded
versions of FLIRT for different query workloads. Experimental
results show up to 7× speedup over conventional indexes, 8×
speedup over queues, and up to 109× speedup over learned in-
dexes.

1 INTRODUCTION

Efficiently managing high volumes of streaming data is essential
to large-scale stream processing applications. Streaming data is
inherently time-ordered [16] and has a virtually unlimited size;
therefore, one can only keep a limited history of the streaming
data at a time, called a sliding window. The capacity of a sliding
window is defined in terms of a maximum number of records or
a time-based limit where records expire from the window after
a certain period, e.g., one hour. Managing a sliding window of
a high-velocity data stream requires efficient in-memory index
structures that support search operations, including range and
point lookup, to perform analysis. Such systems are heavily used
in high-frequency trading algorithms [3, 46], and spatiotemporal
continuous queries [14].

Recently, learned indexing structures have been suggested as
efficient alternatives to classical indexes. In learned indexes, a
machine learning model replaces the algorithmic components
of classic index structures, resulting in a considerable reduction
in index size and a significant performance gain. This reduces

∗Both authors contributed equally to this research.

© 2023 Copyright held by the owner/author(s). Published in Proceedings of the
26th International Conference on Extending Database Technology (EDBT), 28th
March-31st March, 2023, ISBN 978-3-89318-088-2 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Learned 
Indexes

Update

Search

FLIRT

B+ Tree
Queue

Figure 1: Theoretical search vs update performance trade-

off for sliding window scenarios.

the memory footprint of the index, thereby boosting the perfor-
mance. Learned models are particularly efficient for indexing
static data; in fact, a significant fraction of the existing learned
indexes are read-only. Even though some learned indexes support
updates [12, 20, 41], these indexes are not primarily designed for
update-heavy workloads such as data streams. This is mainly
due to the overhead of training and updating the sophisticated
hierarchical models they use to ensure good search performance.
Therefore, these indexes are mainly considered search efficient
data structures that "allow" for updates similar to traditional
B+Trees (see Figure 1).

Therefore, indexing a continually changing set of keys where
the distribution of the keys constantly drift over time is a chal-
lenge. Additionally, processing data streams involves tackling
the big "velocity" of the data streams, which has not yet been
tackled by existing learned indexes.

A more update-friendly solution is to implement the sliding
window as a queue (backed by an array or linked list). While a
queue supports fast enqueue and dequeue, a range/point lookup
within the window requires a binary search or memory-intensive
scans. This is shown to be very slow compared to index struc-
tures [26, 36], especially with ever-growing sizes of stream data.
Therefore, a traditional queue can be seen as an update efficient
data structure that supports search operations, which is on the
other side of the spectrum compared to typical B+Trees and
updatable learned indexes. We seek to combine the update per-
formance of queues with learned models to boost the search per-
formance. Our goal is to create an index structure that is efficient
for read-heavy and write-heavy workloads. This is illustrated in
Figure 1.

This paper proposes FLIRT, a Fast Learned Index for Rolling
Time-frames. FLIRT is specifically designed for the unique pat-
tern of sliding or rolling windows where the keys arrive in a

 

 

Series ISSN: 2367-2005 234 10.48786/edbt.2023.19

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2023.19


t

Rolling Window

... ...

Expired tuples Arr iving tuples

...

EnqueueDequeue

FLIRT

Tuples in stream

LP-Segment

Segment Summary

Figure 2: FLIRT Overview

monotonic order (e.g., timestamps) and have a high rate of inser-
tion and deletion as the window slides over the stream. FLIRT
is parameter-free and incorporates learned indexing techniques
such that the index does not need any re-balancing or re-training
when it is fed by the stream.

The contributions of FLIRT are as follows: 1) FLIRT organises
streaming records in linearly predicable segments (LP-Segments)
and accelerates lookups by allowing records to be located using
a linear model. It efficiently supports insertions and deletions
of records without re-training or re-balancing. FLIRT uses a cir-
cular queue called SummaryList to organise the LP-Segments.
While LP-Segments improve the search performance, the queue
structure improves the update performance. 2) FLIRT auto-tunes
itself by minimizing the search cost. Auto-tuning is crucial for
continuous stream processing as the distribution of the data is
unknown and ever-changing. Specifically, FLIRT optimises the
error threshold to find the perfect balance between the size of
the SummaryList and the search range in each LP-Segment. 3)
ParallelPartitionedFlirt (PPFlirt) and ParallelSharedFlirt (PSFlirt)
are introduced to improve the search performance through multi-
threading. Both PPFlirt and PSFlirt use an asynchronous search
that scales linearly with the number of threads. PPFlirt partitions
the data to reduce the search cost in each thread for balanced
query workloads. In PSFlirt, the queries are distributed equally
across all threads, which improves performance for queries with
a skewed workload.

Results show that FLIRT achieves up to 13× speedup over
B+Trees, up to 7× speedup over queues, up to 105× speedup
over LIST (a streaming index), up to 5× speedup over PGM and
up to 109× speedup over ALEX (two efficient and updatable
learned indexes). Furthermore, PPFlirt is able to scale up the
search throughput of FLIRT by 32×, and PSFlirt improves the
search throughput by 4× over FLIRT on a 24-core machine.

2 RELATED WORK

Related work can be classified into index structures for range
queries, learned indexes, indexes for sliding windows and stream
processing systems.

Index structures for range queries include B+Trees and skiplists.
In particular, B+Tree and its extensions [17, 29, 30] are the de-
facto standard in most database systems [11].

An alternative approach to B+Trees and other algorithmic
indexes is to use machine learning to model the data distri-
bution. For range queries, a learned index model captures the
Cumulative Distribution Function (CDF) of the indexed key.

Table 1: Notations

Notation Definition

𝐸𝑟𝑟 Approximation error threshold
𝑊 Window size
𝑁 Number of segments
𝑡ℎ𝑑 Number of threads
|𝑄 | Number of queries
𝜃 Degree of skewness

𝑡𝑢𝑛𝑒 𝑟𝑎𝑡𝑒 Tune rate
𝑘𝑒𝑦 Lookup key
𝑠𝑒𝑔𝑖 Segment 𝑖
𝑆𝑖 Slope of segment 𝑖 w.r.t. 𝑘𝑖,0

𝑆𝑖 (𝑘𝑒𝑦) Slope of segment 𝑖 w.r.t 𝑘𝑖,0 after inserting 𝑘𝑒𝑦
𝑆𝑢
𝑖

Upper slope of segment 𝑖 with respect to 𝑘𝑖,0
𝑆𝑙
𝑖

Lower slope of segment 𝑖 with respect to 𝑘𝑖,0
𝐷𝑖 Number of deleted keys in segment 𝑖
𝐾𝑖 Keys stored in segment 𝑖
|𝐾𝑖 | Number of keys stored in segment 𝑖
𝑘𝑖, 𝑗 Key stored in segment 𝑖 at index 𝑗
𝑓𝑖, 𝑗 Flag of key stored in segment 𝑖 at index 𝑗

𝑝𝑜𝑠𝑖 (𝑘𝑒𝑦) Predicted position of 𝑘𝑒𝑦 in segment 𝑖

The learned CDF model can then be used to predict the phys-
ical location of the records, given the value of the key. Some
learned index frameworks such as RMI support linear and non-
linear models [28, 37]. Nonetheless, further experimental re-
sults [26, 36] revealed that simple models like linear splines are
effective for most real-world datasets. In this regard, splines of
linear models are widely adopted by most learned indexes, includ-
ing FITing-tree [13], Piecewise Geometric Model index (PGM-
index) [12], ALEX [8], Radix-Spline [27], Model-Assisted B-tree
(MAB-tree) [21], Interpolation-friendly B-tree (IF-Btree) [20] and
others [19, 22, 33, 43]. Spline-based indexes group the keys be-
longing to each spline into a segment andmanage the segments in
a higher-level index structure. The primary distinction between
different indexes is how they train the data (build the splines)
and their choice of the higher-level structure that manages the
splines.

Some learned indexes are specifically designed to handle up-
dates, including ALEX [8], PGM-index [12], Bourbon [6] and
REMIX [51]. Recently, XIndex [47] and FINEdex [31] introduced
multi-threading into learned indexes. Nonetheless, there are no
learned indexes optimized for sliding window stream processing.

235



210

Index = 0

474 769 ...
2

474 < Key < 769

50 ...

...D7|K7| Sl
7 Su

7

...

k7,0

f7,0

...

...

k7,52

f7,52

...

...

Lookup Key : 500

Index = 52

Binary Search

...

52 + Err52 - Err

... 51 52 ...53

k7,|K7|-1

...

|K7| - 1

...

3

...
...

5763
4

0
3

Search

Predict
Seg Index = 0 ... 6 7 8 ... 91

FlagKey

Segment |K| Number 

of keys
D Number of 

deleted keys

Lower 
Slope

Sl Upper 

Slope
Su k f

Summary 
List

Ki = Key of Segi

Si = Slope of Segi

 

Ki

Si

Segment 

Summary 

PL PR

PL
Left 

Sibling 

Pointer

PR
Right 

Sibling 

Pointer

Figure 3: Detailed structure of FLIRT and example search using FLIRT.

Learned indexes have also been extended to spatial and multidi-
mensional indexes [10, 23, 32, 38, 40, 42], indexing data with cor-
related attributes [9, 18, 39, 48], write-optimised indexes [6, 51],
and index recommendation [7, 41].

Machine learning has also been adopted in some components
of stream processing systems, especially for frequency estima-
tion [2, 4, 24, 25]. While ML is not yet successfully applied to
indexing sliding windows, developing stream indexes is an active
area of research and index structures are developed for differ-
ent applications. Research on streaming systems has shown that
using an index improves the performance of stream join [44,
49]. [15] uses a circular array of basic windows to index the
streams. The basic windows stores a summary of the keys to
decrease memory usage and improve query performance. The
data structure of the basic window itself depends on the type of
query. The authors state that a linked list basic window (LIST)
works well for most cases due to its simplicity. Sliding window
indexes have also been extended to the spatio-temporal domain.
The Sliding Window Spatio-Temporal index (SWST) [45] and
Trails-tree [34, 35] enable disk-based indexing of a limited sliding
window over spatio-temporal data.

3 FLIRT OVERVIEW

Indexing data stream deals with continuously generated data
whose distribution changes over time. Search efficient data struc-
tures, such as the B+Trees and learned indexes [8, 12, 13], sup-
port updates. However, their performance deteriorates with high-
velocity insertions and deletions. Furthermore, these indexes are
inefficient for sliding-window update patterns, where insertion
occurs at the end (enqueue), and deletion occurs at the front
(dequeue). Update-efficient data structures such as queues are
very efficient at updating; however, queues are not designed for
fast searches. A detailed breakdown is shown in Section 6.

FLIRT is tuned for fast searching and updating on sliding-
window data streams. Figure 2 shows a time series streaming
data where the keys are timestamps of a dataset. As time passes,
new timestamps are inserted at the end of the index, and the
expired timestamp is removed from the start of the index. The
remainder of the paper refers to FLIRT insertions and deletions
as enqueues and dequeues, respectively.

Learned indexes consider indexes to be functions that map
a key to a physical storage location. They then use a machine
learning model to approximate the function [28]. FLIRT approxi-
mates the mapping using piecewise linear functions, an approach

similar to spline-based learned indexes [8, 12, 13, 27, 33]. Spline-
based learned indexes have shown to be inexpensive to compute
and store. Most importantly, they are update-efficient. We refer
to this mapping as linearly predictable segments (LP-Segments).

The key insight for learned indexes is that they provide an
approximation since the predicted location may not be the actual
location of the key. To control the precision of the approximation,
learned indexes use an error threshold, which determines the
maximum distance between the actual and predicted positions.
The optimal error threshold depends on the distribution of the
dataset. FLIRT auto-tunes the error based on the search cost,
making it parameter-free, and is discussed in detail in Section 4.

Figure 2 shows an overview of FLIRT. Each LP-Segment, in
green, holds a linear regression model. Each segment contains a
set of metadata, a set of keys covered by the regressionmodel, and
a set of payloads. The SummaryList queue stores a summary of
the segments (in orange). The summary, which contains metadata
of each segment, allows FLIRT to manage each segment for cache-
efficient lookups. Segments are connected to their neighbours to
efficiently execute range queries with high selectivity.

FLIRT’s data structure is suited for asynchronous parallel
query processing. We introduce two multithreaded versions of
FLIRT, called ParallelPartitionedFlirt (PPFlirt) and ParallelShared-
Flirt (PSFlirt), to further improve the search performance. PPFlirt
improves performance by partitioning the data to reduce the data
searched in each thread. Each thread has a local FLIRT and exe-
cutes searches asynchronously without communication between
threads. An update thread manages the enqueue and dequeue op-
erations. PSFlirt keeps the data in one global FLIRT and does not
partition the data. The search threads access the non-updating
segments freely, while the update thread enqueues and dequeues
from the back and front segments. In both versions, increasing
the number of threads will only increase the number of search
threads due to the nature of sliding-window data streams. Details
are discussed in Section 5.

FLIRT aims to achieve the following goals with respect to
traditional data structures (B+Tree and queue) and learned in-
dexes (ALEX and PGM-index). (1) A faster search time for larger
window sizes. (2) Faster insertions and deletions performance.
(3) Reducing the index size to achieve better cache efficiency.
PPFlirt and PSFlirt further improve the search performance while
maintaining a high update performance. Table 1 summarises the
notations used in this paper.

236



Create

2.0 <=Si(5766) = 5 <= 6.0

(a)

5766

New Key : 5766

 key

Acceptable 

error range

Upper

First key of 
segmentation

Accpeted newly 
inserted key

Position

 Newly inserted 

key that violates 
error threshold 

Lower
5763

4

k91,10
15 

+1
2.0 6.0

f91,1

k91,0

f91,0

...

...

...

...

k91,14

...

<K91, F91><seg91, Info>

5766

0

Append

Sl
91 Su

91|K91|D91

New Key : 5788

Si(5688) = 0.6 <= 2.0

5763
4

5788
1

01 0.0 inf

<seg92, Info>

5788

|K92| D92

Append

(b) (c)

5788

0

Sl
92 Su

92

<K92, F92>

Seg Index = ... 91

...
...

Seg Index = 91 92

...
...

PL
PL

Figure 4: Example enqueue using FLIRT. (a) Segmentation algorithm used by FLIRT, green point indicates the first key of

the segment, and the blue point indicates a newly inserted key. (b) Inserting a key that does not violate error threshold. (c)

Inserting a key that requires a split.

4 FLIRT DESIGN

FLIRT manages the LP-Segments using an array-based circular
queue structure shown in Figure 3. A circular queue is chosen
over a linear queue for its performance advantage and memory
efficiency. An array-based circular queue is chosen to reduce
memory access and cache misses compared to a linked-list based
queue.

We store a segment summary, including the starting key and
slope, in the queue to find the predicted position without access-
ing the segment itself, thereby reducing memory access. The
starting key identifies the range of keys each segment covers,
and the slope finds the predicted position. The LP-Segments are
connected via two sibling pointers to improve the range query
performance.

Each LP-Segment contains two error bounds, an upper and
a lower error bound, to ensure the keys in each segment are
within the error threshold. Initially, when only one key is in the
segment, the upper and lower error bounds are infinity and zero,
respectively. The slope of upper error bounds starts to decrease
when inserting keys while the slope of the lower error bound
increases. The two error bounds form a narrowing cone with
more keys [13]. The slope of the segment is the average of the
two error bounds.

Each key is associated with a deletion flag to allow keys to
be deleted without shifting. Shifting keys is expensive and more
costly for learned indexes because moving keys requires retrain-
ing the segment. We carry out a pseudo-delete by flagging the
key and actually deleting the entire segment once all the keys
have expired.

4.1 Search

FLIRT first searches the SummaryList to locate the segment that
contains the lookup key. Each segment 𝑠𝑒𝑔𝑖 contains 𝑘𝑖,0 ≤ 𝐾𝑖 <

𝑘𝑖+1,0. The search finds the last segment whose 𝑘𝑖,0 is equal to or
smaller than the lookup key. An example is shown in Figure 3.
We find the segment with a starting key of 474 contains the
lookup key 500. The process is similar to a non-leaf node B+Tree
traversal.

FLIRT uses linear search when the SummaryList is small and
binary search when the SummaryList is large. Empirical studies
show linear search is more efficient for smaller arrays and binary
search is more efficient for larger arrays, and the threshold for
switching between the two is 256 bytes [1]. The linear search
algorithm is trivial: compare the lookup against each key in the

SummaryList until the search condition is met. A binary search
algorithm uses an inequality check to satisfy the search condition.
For example, if 𝐾 [𝑚𝑖𝑑] ≤ 𝑘𝑠𝑒𝑎𝑟𝑐ℎ < 𝐾 [𝑚𝑖𝑑 + 1], segment 𝑠𝑒𝑔𝑚𝑖𝑑

contains the search key, otherwise the binary search continues.
Inside the LP segment, we apply the linear regression model

𝑆𝑖 × (𝑘𝑒𝑦 − 𝑘𝑖,0) to find the predicted position of the key. In
our example in Figure 3, the predicted position is 52. Since the
predicted position and the actual position is guaranteed to be
no larger than the 𝐸𝑟𝑟 , a local binary search between the error
bounds [𝑝𝑜𝑠𝑖 (𝑘𝑒𝑦) − 𝐸𝑟𝑟, 𝑝𝑜𝑠𝑖 (𝑘𝑒𝑦) + 𝐸𝑟𝑟 ] finds the lookup key.
If we find the key within the error bound, we check its deletion
flag 𝑓𝑖, 𝑗 to determine if the key has been removed. If the key is
not within the error bound, the key does not exist in the index.

4.2 Enqueue

There are two cases when inserting into the segment: (1) after
insertion; the maximum error is less than the error threshold,
and (2) after the insertion, the maximum error is greater than the
error threshold. We check if the inserted key violates the error
threshold by checking if the slope falls within the error bound
shown in Figure 4a. The slope for segment 𝑖 is computed with:

𝑆𝑖 (𝑘𝑒𝑦) =
|𝐾𝑖 |

𝑘𝑒𝑦 − 𝑘𝑖,0
(1)

Where, 𝑆𝑖 (𝑘𝑒𝑦) is the slope of segment 𝑖 after 𝑘𝑒𝑦 is inserted,
𝑘𝑒𝑦 is the insertion key, 𝑘𝑖,0 is the first key of 𝑠𝑒𝑔𝑖 , and |𝐾𝑖 | is
the position where 𝑘𝑒𝑦 is inserted. |𝐾𝑖 | is actually the number
of keys in 𝑠𝑒𝑔𝑖 , which is same as the position for newly inserted
keys when enqueuing.

An example of the first case is shown in Figure 4b. The slope
falls within the error bound, and the key is inserted at the end
of the segment. We use a dynamically allocated array that has
an atomized insertion cost of 𝑂 (1) to store the keys. The seg-
ment updates the slope and error bounds after each insertion.
The upper bound and lower bound are computed by adding or
subtracting the error bound to Equation 1:

𝑆𝑢𝑖 = min

(

𝑆𝑢𝑖 ,
|𝐾𝑖 | + 𝐸𝑟𝑟

𝑘𝑒𝑦 − 𝑘𝑖,0

)

(2)

𝑆𝑙𝑖 = max

(

𝑆𝑙𝑖 ,
|𝐾𝑖 | − 𝐸𝑟𝑟

𝑘𝑒𝑦 − 𝑘𝑖,0

)

(3)

The error bounds shrink with more keys. The degree of shrink-
age depends on the data distribution. If the distribution is close

237



D0 

0 16 18
3 5 2

|K0|

15 Sl
0 Su

0 k0,0

1

k0,1

0

k0,2

0

k0,3 k0,4

00

(a)

(b)

...
...

Seg Index = 0 1 2 ...

PR

0 16 18
3 5 2

55 Sl
0 Su

0 k0,0

1

k0,1

1

k0,2

1

k0,3 k0,4

11

|K0| D0 

...
...

New Seg Index = 0 1 ...

Seg Index = 0 1 2 ...

PR

Figure 5: Example dequeue using FLIRT. (a) Segment is not

empty after dequeue. (b) Segment is empty after dequeue.

to linear, the error bounds shrink very slowly. When the distribu-
tion is less predictable, the error bounds tend to decrease rapidly,
and keys are more likely to be outside of the error bound.

An example of the second case is shown in Figure 4c. If the
key is inserted into the segment, we cannot guarantee the true
position is at a maximum distance of 𝐸𝑟𝑟 away from the predicted
position. We split the segment once the error threshold is violated
which eliminates the need to retrain keys in the current segment.
The inserted key is the first key of the new segment and will be
appended to the SummaryList.

4.3 Dequeue

There are two cases when deleting from each segment: (1) After
deletion, the segment is not empty. (2) After deletion, the segment
is empty. For the first case, shown in Figure 5, we select the first
key in the segment 𝑘𝑖,0 and update its deletion flag 𝑓𝑖,0 = 1. A
deletion counter is updated 𝐷𝑖 = 1. The deletion counter is used
as the index for subsequent deletes. The segment is empty once
all the keys are deleted |𝐾𝑖 | == 𝐷𝑖 , shown in Figure 5b. The entire
segment is then removed from the SummaryList, and all records
within the segment are deleted. The right sibling of the deleted
segment becomes the first segment in FLIRT.

The reason to use a deletion flag is to reduce the cost of shifting
every time a deletion occurs, hence, reducing latency. Shifting
also requires the regression model to be retrained or the error
to be increased to accommodate the change in position of keys.
Hence, we want to prevent shifting at all costs. In return, the
search operation requires an additional check. The experimental
evaluation shows that the cost is minimal and does not impact
FLIRT’s performance.

4.4 Auto-tune

The performance of FLIRT depends on the error threshold 𝐸𝑟𝑟 .
The error threshold determines the error bound in each segment
and influences the number of segments (determined by window
size and error bound). Large error thresholds allow more keys
stored in each segment, hence, reducing the number of segments
and results in a smaller SummaryList. In the extreme case, all keys

are contained in one segment. The search in the SummaryList is
improved, but the local search in each segment worsens. Small
error thresholds generate smaller segments and larger Summa-
ryList. In the extreme case when the error is zero, each segment
stores two keys (the cone will have an area of zero). FLIRT es-
sentially behaves like a queue and gains no benefit from the
regression model.

We can determine an optimal error threshold for a static
dataset. However, streaming datasets are dynamic, and their
distribution is constantly changing; therefore, there is no one
value that fits all situations. FLIRT dynamically changes the er-
ror threshold using a cost model. The cost model minimizes the
combination of the cost of the SummaryList search and the cost
of the local search:

𝐶 = log(𝑁 )
︸  ︷︷  ︸

SummaryList Search

+ log(𝐸𝑟𝑟 )
︸    ︷︷    ︸

Segment Search

(4)

FLIRT initially uses a default error threshold of 𝐸𝑟𝑟 = 256 and
bulk loads the keys until the number of keys reaches the window
size. The initial cost of the index is 𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = log(𝑁 ) + log(𝐸𝑟𝑟 ),
where 𝑁 is the number of segments. We double the error thresh-
old 𝐸𝑟𝑟𝑛𝑒𝑤 = 2𝐸𝑟𝑟 after bulk loading and update the index. A
tune rate controls how many updates before we tune the er-
ror threshold. By default, the value is 10% of the window size.
Once we hit the tune rate, we estimate the cost of the index
𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = log(𝑁𝑛𝑒𝑤/𝑡𝑢𝑛𝑒 𝑟𝑎𝑡𝑒) + log(𝐸𝑟𝑟𝑛𝑒𝑤), where 𝑁𝑛𝑒𝑤

is the number of newly inserted segments. If the current cost
𝐶𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is lower than the initial cost𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , we continue in the
same direction and double the error. For the opposite situation,
we reverse the direction and halve the error. This process is simi-
lar to the gradient descent algorithm, where we find a direction
that minimizes the cost. The current cost replaces the initial cost,
and we continue to update the index until we hit the tuning rate.

Similar to having large learning steps in the gradient descent
problem, doubling and halving the error threshold may skip over
the optimal error. Therefore, we reduce the tuning step when the
error threshold bounces between two values using a step decay
approach. Specifically, we reduce the tuning step by half once
the error threshold bounces between two values 5 times. We also
have to consider distribution changes which cause the optimal
error to shift. Therefore, we increase the tuning step if the error
threshold continuously grows in one direction by reversing the
reduction in the tuning step (doubling the tuning step once the
error threshold moves in one direction for 5 times).

5 PARALLELIZING FLIRT

ParallelPartitionedFlirt (PPFlirt) and ParallelSharedFlirt (PSFlirt)
are two multithreaded versions of FLIRT designed to improve
the search throughput. Both versions have a single update thread
and an arbitrary number of search threads. This is because data
are always enqueued at the end and dequeued from the front.
Multiple update threads will lead to race conditions and require
considerable synchronisation. PPFlirt partitions the data such
that each thread has its own local data and is designed for general
use case. While PSFlirt shares the data and allows threads to
access different parts of the data and is optimised for skewed
workloads.

5.1 Parallel Partitioned Flirt (PPFlirt)

Figure 6a shows the structure of PPFlirt. Data is range partitioned,
and each partition has its own local FLIRT. The goal is to reduce

238



Thread Pool

Enqueue

0 1 2 thd - 1

Dequeue Partition Enqueue PartitionSearch Parition Search Parition

...

3

Search Parition

Partition ID = 

Search Search Search Search

Figure 6: Overview of Parallel Partitioned Flirt (PPFlirt): Each partition is maintained exclusively by its own thread.

Indicate 

Synchronization 

Partition in 

which thread 

only do search

Step n:

Pseudo-Dequeue: no real dequeue 

until free entir partition when 

Enqueue Thread takes over

Partition ID = 0 1 2 3

Dequeue Partition Enqueue Partition
Enqueue

Search Parition Search Parition

Old Dequeue Partition Old Enqueue PartitionNew Dequeue Partition Search Parition

Change this thread to 
search thread and shift to 

next thread Takes over old Dequeue Partition and turn it to Enqueue Par Partition

New Search Partition

New Enqueue Thread

Step n+1:

New Enqueue PartitionEnqueue

Partition in which 

thread  do both 

search and enqueue

Figure 7: Enqueue and Dequeue in PPFlirt.

Search Partition Search Partition

keys

1000

500

75

10

keys

1000

500

75

10

keys

1000

500

75

10

keys

1000

500

75

10

Min = 7 Max = 77 Min = 109 Max = 470 Min = 499 Max = 580 Min = 690 Max = 990

Dequeue Partition

Partition ID = 0 1 2 3

990

Enqueue Partition
Enqueue

Figure 8: Asynchronous search in PPFlirt.

the amount of data each thread processes, thereby, increasing
search throughput. We partition each thread to have an equal
number of keys for load balancing. The local capacity of each

thread is 𝑊
2(𝑡ℎ𝑑−1)

. The −1 ensures that one of the threads is

initially empty for enqueuing.
We initialize PPFlirt by partitioning the data into equal sizes

with key ranges increasing with thread ID. The dequeue partition
is always behind the enqueue partition. Initially, the first partition
is the dequeue partition, and the last partition is the enqueue
partition as we consider the threads to be in a circular loop. The
last partition is assigned to the update thread, while the rest of
the partitions are assigned to search threads. Each thread, except
for the update thread, builds a local FLIRT for the portion of data
they manage and stores the first and last key to keep track of the
key range.

5.1.1 Enqueue & Dequeue. Since the window size of the in-
dex is constant, an enqueue is paired with a dequeue. However,

updating the two partitions requires synchronization, which re-
duces the performance of the system. Instead, we advocate for a
łpseudož delete, where we keep track of which keys are deleted
and do not modify the dequeue partition itself. Since the enqueue
and dequeue operation are paired, and each partition is indepen-
dent, the position to enqueue is equal to the position to dequeue.
For example, if we enqueue a key into position 0 of the enqueue
partition, the key at position 0 in the dequeue partition is deleted
to ensure a constant window size. Therefore, we use a thread-safe
update counter to keep track of the enqueue/dequeue position.

The update thread inserts to the enqueue partition, which is
initially empty. Internally, it calls the FLIRT enqueue operation
and increments the update counter. A search is carried out in the
update thread after each enqueue since keys may fall within it’s
key range. The dequeue partition is managed by a search thread
with a special search operation. The search operation finds the
position of the lookup key, if it exists, and compares the index
with the update counter. The key has expired if the position is
less than the counter.

Once the enqueue partition is full, it becomes a search partition,
and the dequeue partition becomes the new enqueue partition.
The actual deletion occurs during this transfer when the dequeue
partition is emptied. In Figure 7, the new enqueue partitionmoves
to thread 0, thread 1 becomes the new dequeue partition and
thread 3 becomes a search partition. Thread 0 is the new update
thread, and the original data in thread 0 is emptied. The update
counter is reset to zero to indicate the new enqueue/dequeue
position. No synchronization is needed for this transfer, as all
updates occur in one thread.

5.1.2 Search. The order in which threads execute depends
on the scheduler and is not deterministic. PPFlirt search threads

239



...

Update EnqueueThread Pool

Search

Purge

AddShared 

Access

Exlusive 

Access

Figure 9: Overview of Parallel Shared Flirt (PSFlirt): All

segments are shared among multiple threads, except for

the enqueue thread.

work asynchronously to increase throughput. We can use a mas-
ter thread as a range dispatcher that assigns keys to the corre-
sponding partition. However, this process is sequential and not
parallelizable and may create a performance bottleneck. Further-
more, enqueue and dequeue require the range to be updated and
require synchronization to prevent race conditions.

Alternatively, each thread will have a search queue with the
same lookup keys shown in Figure 8. There is no master thread
that dispatches to each search queue; all threads asynchronously
read from one queue of queries. Each thread has an independent
łviewž of the queries, and once all threads surpass a certain part
of the queries queue, the old queries can be deleted. To reduce
unnecessary searches, each thread first checks if the lookup key
is within its range, which takes 𝑂 (1) time, before carrying out a
FLIRT search. No race conditions will occur since each key can
only exist in one partition. Section 6.10 shows that the search
queue dispatcher performs better than the range dispatcher; how-
ever, both are not the bottlenecks of the system.

Range queries may intersect multiple partitions; therefore, the
check will consider the search radius. If the key range intersects
the lower and upper bound of the range query, the thread will
carry out a FLIRT range search. The final result is aggregated
from multiple threads in an asynchronous manner. There is a
special case where the range query covers an entire partition
which occurs when the query range is large or the partition is
small. In this case, we traverse the local FLIRT and return all
non-expired keys to avoid the overhead of searching.

5.2 Parallel Shared Flirt (PSFlirt)

Figure 9 shows the structure of PSFlirt. It keeps the data in one
global index, and threads can freely access different parts of the
index asynchronously. PSFlirt is designed for query workload
balance such that each thread will process a similar number of
queries. It achieves higher search throughput by simply having
more search threads. The number of data each thread has to
search is the same as FLIRT. Therefore, the throughput for a
balanced workload will be lower than PPFlirt because each thread
has to process a larger index. However, PSFlirt is more suited
for skewed query workloads where the search keys are more
concentrated in parts of the range. In the extreme case, one of
the threads in PPFlirt will be saturated with queries while the
rest do nothing. PSFlirt’s threads will have a balanced query load,
thereby increasing parallelism.

5.2.1 Enqueue & Dequeue. PSFlirt also uses łpseudož deletes
to reduce synchronization costs. Similar to PPFlirt, we use a
thread-safe counter to store the update position. Since PPFlirt
uses a single index and the segment sizes vary with key distribu-
tion, the enqueue position and dequeue position is not in sync.

Each segment needs to keep track of the sequential ID of its first
key. The sequential ID is the index of the key in the entire stream
and increases with data. For example, assuming a window size
of 100, the last key will have a sequential ID of 99. The next key
inserted into the index will have an ID of 100, and the subsequent
key will have an ID of 101.

For every update, the update thread first enqueues the key
to the last segment and increments the update counter before
checking if the first segment needs to be deleted. PSFlirt uses two
reader-writer locks for synchronization. The first lock is located
at segment level and is used for enqueues that does not split the
segment. Only readers who need access to the last segment will
have to wait. The second lock is at the queue level and is only
triggered when a segment is appended to the SummaryList. All
readers must wait in this case. We check whether to delete the
first segment by checking if the update counter is equal to the
sequential ID of the second segment. If the sequential ID is equal
to the counter, the queue level lock is triggered, and the first
segment is removed from the SummaryList.

Since the sequential ID and update position grows indefinitely
with more data, there is a chance of overflowing. Hence, we
reset these two values to zero if the next update triggers an
overflow. PSFlirt then scans through the SegmentList and updates
the sequential ID of the first key in each segment.

5.2.2 Search. Each search thread will have its own search
queue with different lookup keys and uses a reader lock to freely
traverse PSFLirt until an update is triggered. All threads can
access the first segment; therefore the search operation needs
to check if the key has expired. The sequential ID of a key in
𝑠𝑒𝑔𝑖 is the position of the key in 𝑠𝑒𝑔𝑖 plus the sequential ID of
the first key 𝑘𝑖,0. The key has expired if the sequential ID is less
than the update counter. The search operations, including range
search, are the same as FLIRT with the addition of reader locks
for synchronization.

6 EXPERIMENTAL EVALUATION

This section evaluates the performance of FLIRT, PPFlirt and
PSFlirt. We first show an analysis of the auto-tune method and
the performance of FLIRT against different baselines. We then
show the performance of FLIRT under varying window sizes,
read-write ratios, number of operations and query ranges. The
performance of PPFlirt and PSFlirt is compared with FLIRT for
different numbers of threads. The highlights from our evaluation
are:

• FLIRT’s auto-tune method is able to find the best perform-
ing error threshold.

• Compared to traditional indexes, FLIRT achieves up to a
6.9× speed-up against a B+Tree and up to an 8.0× speed-
up over a circular queue.

• Compared to updatable learned indexes, FLIRT achieves
up to a 108.5× speed-up over ALEX and up to 5.0× speed-
up over PGM.

• Compared to the streaming index, FLIRT achieves up to a
105× speed-up over LIST.

• PPFlirt and PSFlirt achieves up to 32.0× and 4.1× increase
in search throughput over FLIRT. PSFlirt has consistent
performance under skewed workloads.

6.1 Experimental Setup

FLIRT and ParallelFLIRT are implemented in C++ and the experi-
ments were conducted with gcc on a machine with Intel E5-2680

240



4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
0
1
2
3
4
5
6
7

Co
st

1e6

books

noSeg Error

4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
0

2

4

6

8 1e6

fb

4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
0

1000

2000

3000

4000

lognormal

4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96

Err

0

1000

2000

3000

4000

normal

4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
0

1

2

3

4

5

1e6

osm

4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
0

1000

2000

3000

4000

udense

4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1e6

usparse

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 6

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1e 6

0

1

2

3

4

1e 7

0.0

0.5

1.0

1.5

2.0

2.5

3.0
1e 7

0.0

0.5

1.0

1.5

2.0

1e 6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
1e 7

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Ti
m

e 
(s

)

1e 6

Static Autotune

Figure 10: Performance comparison of FLIRT with auto-tuned 𝐸𝑟𝑟 and FLIRT with a predefined static 𝐸𝑟𝑟

bo
ok

s fb

lo
gn

or
m

al
no

rm
al

os
m

ud
en

se
us

pa
rs

e

Datasets

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e 
(

s)

Enqueue

bo
ok

s fb

lo
gn

or
m

al
no

rm
al

os
m

ud
en

se
us

pa
rs

e

Datasets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(

s)

Search

bo
ok

s fb

lo
gn

or
m

al
no

rm
al

os
m

ud
en

se
us

pa
rs

e

Datasets

0.0

0.5

1.0

1.5

2.0

2.5

Ti
m

e 
(

s)

Dequeue

bo
ok

s fb

lo
gn

or
m

al
no

rm
al

os
m

ud
en

se
us

pa
rs

e

Datasets

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ti
m

e 
(

s)

TotalTime

ALEX B+Tree FLIRT LIST PGM QUEUE

Figure 11: Overall performance breakdown of FLIRT against baselines

v3@2.50GHz running Centos 8. We use 7 datasets from the SOSD
benchmark [26] to ensure that our results are reproducible and
comparable with other learned indexes. Specifically, 3 real-world
datasets (books, fb and osm), and 4 synthetic datasets (lognor-
mal, normal, uniform dense and uniform sparse) were used for
the experiments. We are aware of the benchmark datasets used
for streaming such as YSB [5] and Stock [50]. However, these
datasets are used to showcase how streaming systems schedule
the data, such as arrival/departure rates. For learned indexes,
however, we are more concerned about how indexes perform
with different distributions of the data.

The baselines include a STX implementation of B+Tree1, a
circular queue using arrays, LIST using linked list as the basic
window, PGM-index2 and ALEX3. Bourbon and REMIX are insert-
optimised and do not describe how deletions work for a learned
LSM-tree. LSM-trees itself does not support efficient deletions.
Hence, Bourbon and REMIX are not included in the baselines.

The number of records in the index is determined by the win-
dow size and is kept constant with updates to simulate a tuple
based sliding window. The default window size is 100𝑀 keys
such that the data does not fit in the cache. Learned indexes
are pointless if the data fits in cache, as it would be difficult to
outperform a B+Tree.

The default workload involves a single update (enqueue and
dequeue) followed by a search. Each search consists of finding
the 𝑟𝑎𝑛𝑘 (𝑥), where 𝑥 is the lookup key [12]. The combination
of an update and search is considered an operation as it repre-
sents a sliding window moving one step. The default number of
operations is 1𝑀 and the tune rate is 0.1% of the window size.

1https://github.com/bingmann/stx-btree
2https://github.com/gvinciguerra/PGM-index
3https://github.com/microsoft/ALEX

Wemeasure the performance using execution time and through-
put. Execution time is the average execution of each operation
(enqueue, dequeue, and search) and is timed using the C++ stan-
dard chrono library. Throughput measures the executions per
second and is used for the multi-threaded cases.

For skewed query workloads, we use a Zipfian distribution
with different degrees of skewness 𝜃 from 0.1 to 0.9. The number
of queries 𝑄 in each process 𝑖 is given by:

|𝑄𝑖 | =
|𝑄 |

𝑖𝜃 ×
∑𝑡ℎ𝑑

𝑗=1
1
𝑗𝜃

(5)

Where, |𝑄 | is the number of queries and 𝑡ℎ𝑑 is the number
of threads (set to 12). For PPFlirt, |𝑄𝑖 | is the number of queries
in each thread. More queries are given to the first threads as 𝜃
increases. For PSFlirt, |𝑄𝑖 | is the number of keys in each different
part of the data. Similarly, more data is sampled from the front of
the data as 𝑡ℎ𝑒𝑡𝑎 increases. We then distribute the skewed queries
evenly across search threads. We test the search performance
under a skewed workload; hence, no updates are performed.

6.2 Evaluation of Auto-tune Method

As discussed in Section 4.4, the performance of FLIRT depends
on the error threshold. We first want to verify that there is a
minimum error in the cost model to justify its use. The red and
orange lines in Figure 10 correspond to the left 𝑦-axis and shows
the SummaryList search cost (log(𝑁 ) in red) and Segment search
cost (log(𝐸𝑟𝑟 ) in orange) against error values from 4 to 4096.
We can clearly see the intersection between the two costs for
lognormal and normal; therefore, an error that minimises the cost
does exist. We are unable to see the intersection for the rest of
the datasets due to the number of segments being too large. The

241



bo
ok
s fb

lo
gn
or
m
al

no
rm

al

os
m

ud
en
se

us
pa
rs
e

Datasets

0

250

500

750

1000

1250

1500

1750

2000

in
st
ru
ct
io
ns

instructions

bo
ok
s fb

lo
gn
or
m
al

no
rm

al

os
m

ud
en
se

us
pa
rs
e

Datasets

0

20

40

60

80

100

120

L1
-m

iss
es

L1-misses

bo
ok
s fb

lo
gn
or
m
al

no
rm

al

os
m

ud
en
se

us
pa
rs
e

Datasets

0

5

10

15

20

25

30

35

40

LL
C-
m
iss

es

LLC-misses

bo
ok
s fb

lo
gn
or
m
al

no
rm

al

os
m

ud
en
se

us
pa
rs
e

Datasets

0

2

4

6

8

10

12

14

16

br
an

ch
-m

iss
es

branch-misses

ALEX B+Tree FLIRT LIST PGM QUEUE

Figure 12: Analysing the processor-level performance counters

intersection does exist and can be seen when we decrease the
window size. Additionally, we observe in our experiments that
larger window sizes tend to prefer larger error thresholds.

We then verify whether the cost model describes the behaviour
of FLIRT and verify the effectiveness of the auto-tune method.
The blue and green areas in Figure 10 correspond to the right
𝑦-axis and shows the execution time of FLIRT without auto-
tuning (blue) for different errors and execution time of FLIRT
with auto-tuning (green). FLIRT without auto-tunes uses a static
error threshold given by the value in the 𝑥-axis. FLIRT with auto-
tuning does not depend on the 𝑥-axis, hence the result is constant
with varying errors. The results highlight two key observations.
(1) The cost model can be verified by FLIRT without auto-tuning
because the minimum execution time and minimum cost have
a similar error threshold. (2) The auto-tuning method is able to
find the error with the lowest execution time.

6.3 Comparison with the baselines

We compare FLIRT against five baseline indexes (B+Tree, Queue,
PGM-index, ALEX and LIST). The branching factor for the B+Tree
is varied from 4 to 4096, and the branching factor that results
in the lowest total execution time is shown. A similar process is
applied to the PGM-index, which uses an error parameter. The
circular queue, ALEX and LIST are parameter-free. Figure 11
shows the execution time against different datasets for different
operations. The total time is the combination of the enqueue,
dequeue and search time. FLIRT is shown to outperform the
baseline across all datasets.

One reason for FLIRT’s superior performance is its small size.
The index size of FLIRT is 0.04% of the window size and is two
orders of magnitude less than rival learned indexes, which take
up 5.5−14% of the window size. The execution time is dominated
by the search time and can be seen by comparing the total time
and search time figures. Update performance is quite consistent
across datasets and is on average 10× faster than the search time.

For the enqueue performance of the baselines, queue achieves
the best performance, and LIST has the worst performance, fol-
lowed by the B+Tree. We did not expect LIST to have the worst
performance since it is based on a linked list. The main ineffi-
ciency comes from the C++ doubly linked list being very cache
inefficient and requires considerable memory especially when
the index size (window size) is large (Figure 13). This further

emphasises why cache efficiency is important. However, LIST
performs consistently across baselines which verifies the authors’
claim in [15]. PGM-index has the best performance regarding
learned indexes due to it having a similar piecewise linear ap-
proximation as FLIRT. The overhead comes from the hierarchical
model requiring multiple levels to be trained. ALEX suffers un-
der a sliding window workload. We think this may be due to
the overhead from the more sophisticated hierarchical structure
optimised for random insertions.

Queues are expected to have the best dequeue performance for
the baseline. The learned indexes are not efficient for dequeueing
and are outperformed by the B+Tree. ALEX is especially inef-
ficient for data with a uniform distribution in the micro-level
(lognormal, normal, uniform dense). We suspect this is because
ALEX puts a lot of keys in a single segment since the micro-level
distribution is linear. The main takeaway is that FLIRT is able to
match the update performance of queues while "learning".

In terms of search performance, learned indexes perform the
best as expected. B+Tree has an average performance, while
queue and LIST have the worst performance. LIST is expected to
have the worst performance since it uses a linked list, which does
not allow for binary search. The rest of the indexes abide by their
typical behaviour. Tree-like structures have significant overhead
when updating; however, the gain in search performance over
linear structures is not nearly as much as one would expect.
FLIRT combines the update performance from linear structures
and search performance from learned indexes to outperform the
baselines.

6.4 CPU-level Micro-Analysis

We use PerfEvent4 to give insight the performance of each index.
Figure 12 shows the L1-cache misses, last level cache misses,
branch misses and the number of retired instructions against
different datasets.

The results show that FLIRT has a low instruction count, simi-
lar to a queue. The L1 cache miss is similar to the learned indexes,
but the LLC misses are higher than the learned indexes. We sus-
pect this is due to the use of a queue like structure rather than a
tree. Interestingly, the branch misses of FLIRT seem to correlate
with the linearity of the distribution. osm is shown to have the

4https://github.com/viktorleis/perfevent

242



105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e 
(

s)

books

105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0 fb

105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0 lognormal

105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0 normal

105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0 osm

105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0 udense

105 107

W

0.0
0.5
1.0
1.5
2.0
2.5
3.0 usparse

ALEX B+Tree FLIRT LIST PGM Queue

Figure 13: Execution time (𝜇𝑠) of all methods with varying window sizes

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

books

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

fb

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

lognormal

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

normal

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

osm

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

udense

104 106

# Ops
0

1

2

3

4

5

Ti
m

e 
(

s)

usparse

ALEX B+Tree FLIRT PGM Queue

Figure 14: Execution time (𝜇𝑠) of all methods with varying number of operations.

101 103

Match Rate
0

5

10

15

20

Ti
m

e 
(

s)

books

101 103

Match Rate

2.5

5.0

7.5

10.0

12.5
fb

101 103

Match Rate

2.5

5.0

7.5

10.0

12.5
lognormal

101 103

Match Rate

2.5

5.0

7.5

10.0

12.5
normal

101 103

Match Rate
0

5

10

15

20

osm

101 103

Match Rate

0

10

20

30
udense

101 103

Match Rate
0

5

10

15

20
usparse

ALEX B+Tree FLIRT PGM Queue

Figure 15: Execution time (𝜇𝑠) under different match rates.

highest branch misses while uniform dense is shown to have close
to zero branch misses.

The queue has a high cache misses rate due to its linear struc-
ture and the need to access different parts of the queue during
each operation since the entire queue cannot fit in the cache.
B+Tree has an average performance across all performance coun-
ters, which is expected for one of the most generic indexes. It
also explains why it has the most average performance in terms
of execution time. The PGM-index is shown to be the most cache
efficient due to its use of linear piecewise approximations and a
tree-like structure. However, the results do not explain why the
PGM-index is inefficient when dequeueing. ALEX is also cache
efficient for most datasets, which suggests that learned indexes
are generally cache efficient. The cache miss rate of ALEX is
related to enqueue and search performance, and the instruction
count relates to the dequeue performance. The combination of
a queue structure and a linked list makes LIST inefficient for all
performance counters, which also explains its’ poor performance.

6.5 Window Size

The window sizes are varied from 10𝐾 to 100𝑀 to compare the
performance at different data sizes, and the results are in Figure 13.
FLIRT maintains the best performance under all window sizes,
with the execution time linearly increasing with window size.
For small window sizes, all indexes perform well as they can all
fit in the cache.

As for the baselines, B+Tree and queue show a two-stage
increase where the rate of increase is lower while the window
size is under 1𝑀 . We suspect that 1𝑀 records is the point when
the data cannot fit in cache, and performance of B+ tree and
queues begin to suffer. The PGM-index becomes more efficient
after 1𝑀 , which shows the benefits of learned indexes. Both
B+Tree and PGM can achieve better performance by tuning the
parameter (branching factor and error) for each window size.
ALEX is very dependent on the data distribution. LIST performs
poorly with large windows as the linked list gets larger. FLIRT,
on the other hand, is parameter-free and can adapt to different
window sizes.

243



bo
ok

s fb

lo
gn

or
m

al

no
rm

al

os
m

ud
en

se

us
pa

rs
e

Datasets

0

20

40

60

80

100

Ti
m

e 
(

s)

R/W ratio = 10

bo
ok

s fb

lo
gn

or
m

al

no
rm

al

os
m

ud
en

se

us
pa

rs
e

Datasets

0

10

20

30

40

50

60

Ti
m

e 
(

s)

R/W ratio = 1

bo
ok

s fb

lo
gn

or
m

al

no
rm

al

os
m

ud
en

se

us
pa

rs
e

Datasets

0

10

20

30

40

Ti
m

e 
(

s)

R/W ratio = 0.1

ALEX B+Tree FLIRT LIST PGM QUEUE

Figure 16: Execution time (𝜇𝑠) under different read-to-write workloads.

10 20

1

2

3

4

Th
ro

ug
pu

t (
Op

s/
s)

 S
ea

rc
h

1e8 books

10 20
0

2

4

6
1e8 fb

10 20
0

2

4

6
1e8 lognormal

10 200

1

2

3

4

5
1e8 normal

10 20
0

1

2

3

4
1e8 osm

10 20
0.0

0.2

0.4

0.6

0.8

1.0
1e9 udense

10 20

1

2

3

1e8 usparse

10 20
thd

0.25

0.50

0.75

1.00

1.25

Th
ro

ug
pu

t (
Op

s/
s)

 U
pd

at
e

1e7

10 20
thd

0.2

0.4

0.6

0.8

1.0
1e7

10 20
thd

0.2
0.4
0.6
0.8
1.0
1.2

1e7

10 20
thd

0.2

0.4

0.6

0.8

1.0
1e7

10 20
thd

0.2

0.4

0.6

0.8

1.0
1e7

10 20
thd

0.00
0.25
0.50
0.75
1.00
1.25

1e7

10 20
thd

0.5

1.0

1.5
1e7

PSFlirt PPFlirt FLIRT

Figure 17: Comparison between the search andupdate performance of FLIRTwith PPFlirt andPSFlirt in terms of throughput.

6.6 Number of Operations

We vary the number of operations from 1𝐾 to 1𝑀 , while keeping
the window size at 100𝑀 , to test the indexes under continuous
updates. One operation is a combination of one enqueue, dequeue
and search. This also leads to themacro-level distribution changes
in the sliding window, especially for osm. The results is presented
in Figure 14. LIST is not shown due to it taking on average 2.5 ×
104𝜇𝑠 . Most of the indexes perform consistently (including LIST)
and are resilient against changes in the macro-level distribution.
The only exception is ALEX.

6.7 Range Query

We evaluate the performance of range queries using a match rate
from 1 to 1000. The match rate is the scan length and determines
how many items to scan in each range query. The results are
shown in Figure 15. LIST is not shown due to it due it taking on
average 3.2 × 104𝜇𝑠 . FLIRT outperforms the baselines across all
match rates. The execution times increase for all indexes as the
match rate increases, and the performance decreases significantly
once the match rate is over 100.

6.8 Read/Write Ratio

We evaluate the performance of the indexes under different work-
loads by varying the read to write ratio from 10:1 to 1:10. The
results are shown in Figure 16. The result complies with Figure 1.
Tree-based learned indexes and B+Trees are shown to perform
better with read-heavy workloads, and queue type structures are
more suited for write-heavy workloads. FLIRT benefits from hav-
ing LP segments in a read-heavy workload and achieves similar
performance to PGM and B+Tree. FLIRT benefits from having
a queue like structure in a write-heavy workload allowing it
to achieve the best performance. The performance of FLIRT de-
creases with a higher read to write ratio (𝑦-axis), and we use
multithreading to improve the search performance.

6.9 Parallel FLIRT Performance

The performance of PPFlirt and PSFlirt is compared against FLIRT.
The window size and the number of updates are 50𝑀 , and the
number of threads is varied from 4 to 24. Since the system per-
forms updates and searches in parallel, we track the time it takes
to complete 50𝑀 updates as well as the number of searches in
that duration. The update throughput is the number of opera-
tions over the duration, and the search throughput is the number

244



0.25 0.50 0.75
0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (O

ps
/s

) 1e8 books

0.25 0.50 0.75
0.6

0.8

1.0

1.2

1.4

1.6
1e8 fb

0.25 0.50 0.75
0.5

1.0

1.5

2.0

1e8 lognormal

0.25 0.50 0.75
0.6

0.8

1.0

1.2

1e8 normal

0.25 0.50 0.75
0.50

0.75

1.00

1.25

1.50

1.75 1e8 osm

0.25 0.50 0.75
0.00

0.25

0.50

0.75

1.00

1.25 1e8 udense

0.25 0.50 0.75

0.8

1.0

1.2

1.4
1e8 usparse

PSFlirt PPFlirt

Figure 18: Performance comparison of PPFlirt and PSFlirt for various degrees of skewness 𝜃

10 20
thd

0.5
1.0
1.5
2.0
2.5
3.0

Th
ro

ug
hp

ut
 (O

ps
/s

) 1e14 books

10 20
thd

0

2

4

6

1e14 fb

10 20
thd

2

4

6
1e14 lognormal

10 20
thd

1

2

3

4

5
1e14 normal

10 20
thd

0.0

0.5

1.0

1.5

1e15 osm

10 20
thd

0.0

0.5

1.0

1.5
1e15 udense

10 20
thd

0

2

4

6
1e14 usparse

Search Queue Dispatcher Range Dispatcher

Figure 19: Comparison of different dispatching mechanisms

of searches over the duration. For PPFlirt, each lookup key will
be counted once by the thread that processes the key. Figure 17
shows the result.

PPFlirt is more scalable and achieves a much higher search
throughput compared to PSFlirt. We expect this result as the
search cost for PPFlirt is roughly log(𝑁 /𝑡ℎ𝑑) + log(𝐸𝑟𝑟 ), while
the search cost of PSFlirt remains the same as FLIRT at log(𝑁 ) +

log(𝐸𝑟𝑟 ). In terms of scalability, PPFlirts achieves an 8.0× in-
crease in search throughput when increasing the thread count
from 4 to 24. Combined with the lower execution time in each
thread from a smaller index, shown in Figure 13, PPFlirt is able
to achieve on average 23.3× speed up over FLIRT. For uniform
dense, we are able to achieve a super-linear speedup of 32.0×.

PSFlirt, on average, achieves a 2.7× increase in search through-
put when increasing the thread count from 4 to 24 and 2.9× speed
up over FLIRT. Each thread in PSFlirt does not have the benefit
of searching a smaller index and has synchronization overheads
(reader-writer locks). When there is one segment in uniform

dense, all threads access the same segment, which leads to star-
vation and the performance is shown to be worse than FLIRT.
PSFlirt shines in a skewed workload, shown in Figure 18, as it
has a better workload balance compared to PPFlirt.

Update performance is shown to suffer compared to FLIRT.
For PPFlirt, the overhead comes from the update thread having
to search after each update, and the update thread moving be-
tween partitions once the current partition is full. For PSFlirt,
the overhead is due to synchronization costs. For future work,
we will explore other thread configurations to increase update
throughput while maintaining high search throughput.

6.10 Query Dispatcher Overhead

We evaluate the performance of the dispatchers for different num-
bers of threads ranging from 4 to 24. We track the time it takes to
complete 50𝑀 dispatches. For the search queue dispatcher, each

partition keeps track of the key range (shown as𝑚𝑖𝑛 and𝑚𝑎𝑥 in
Figure 8). A dispatch operation is complete when the partition
that contains the key range processes the key. For the range dis-
patcher, the dispatching thread keeps track of the key ranges of
each partition and forwards the key to the partition that contains
the key. The throughput is the number of dispatches over the
time taken.

Figure 19 shows the throughput of the dispatchers. The through-
put of both dispatchers is in the range of 1013 to 1014 operations
per second, which is approximately 5 to 6 orders of magnitude
faster than searching and updating throughput. Therefore, the
dispatching mechanism has a negligible overhead in FLIRT opera-
tions and will not cause bottlenecks. The search queue dispatcher
is shown to outperform the range dispatcher; however, the range
dispatcher is shown to be more stable and is consistent with
increasing thread count.

7 CONLUSION

In this paper, we present FLIRT, an updatable parameter-free
learned index for high-velocity data streams. FLIRT auto-tunes
itself to adapt to distribution changes in continuous stream pro-
cessing. We combine learned indexes with updatable queue struc-
tures for fast enqueue, dequeue and search. Specifically, records
are stored in linearly predictable segments that allow for the po-
sition of records to be estimated by a linear model and require no
retraining when updating the index. Our extensive experiments
show that FLIRT consistently outperforms traditional indexes,
streaming indexes and existing updatable learned indexes, on dif-
ferent datasets, across different workloads and update rates. Two
parallel versions of FLIRT, Parallel Partitioned Flirt and Parallel
Shared Flirt, are introduced to enhance the search performance
for different query workloads. We believe our work is a start-
ing point for introducing learned indexes into streaming-based
applications.

245



REFERENCES
[1] 2013. STX B+ Tree Revisiting Binary Search. https://panthema.net/2013/0504-

STX-B+Tree-Binary-vs-Linear-Search/.
[2] Anders Aamand, Piotr Indyk, and Ali Vakilian. 2019. (Learned) Frequency Esti-

mation Algorithms under Zipfian Distribution. arXiv preprint arXiv:1908.05198
(2019).

[3] Ajay Acharya and Nandini S. Sidnal. 2016. High Frequency Trading with
Complex Event Processing. In 2016 IEEE 23rd International Conference on High
Performance Computing Workshops (HiPCW). 39ś42. https://doi.org/10.1109/
HiPCW.2016.014

[4] Dimitris Bertsimas and Vassilis Digalakis Jr. 2020. Frequency Estimation
in Data Streams: Learning the Optimal Hashing Scheme. arXiv preprint
arXiv:2007.09261 (2020).

[5] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,
Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng, et al. 2016. Benchmarking streaming computation engines: Storm,
flink and spark streaming. In 2016 IEEE international parallel and distributed
processing symposium workshops (IPDPSW). IEEE, 1789ś1792.

[6] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020. From wisckey to
bourbon: A learned index for log-structured merge trees. In OSDI. 155ś171.

[7] Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and
Vivek R Narasayya. 2019. Ai meets ai: Leveraging query executions to improve
index recommendations. In SIGMOD. 1241ś1258.

[8] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In SIGMOD. 969ś984.

[9] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: a learned multi-dimensional index for correlated data and skewed
workloads. PVLDB 14, 2 (2020), 74ś86.

[10] Mohamad Dolatshah, Ali Hadian, and Behrouz Minaei-Bidgoli. 2015. Ball*-
tree: Efficient Spatial Indexing for Constrained Nearest-neighbor Search in
Metric Spaces. arXiv:cs.DB/1511.00628

[11] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R Narasayya,
and Manoj Syamala. 2018. Columnstore and B+ tree-Are Hybrid Physical
Designs Important?. In SIGMOD. 177ś190.

[12] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-
dynamic compressed learned index with provable worst-case bounds. VLDB
Endowment 13, 8 (2020), 1162ś1175.

[13] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure. In SIGMOD.
1189ś1206.

[14] Zdravko Galić. 2016. Spatio-temporal data streams. Springer.
[15] Lukasz Golab, Shaveen Garg, and M Tamer Özsu. 2004. On indexing sliding

windows over online data streams. In International Conference on Extending
Database Technology. Springer, 712ś729.

[16] L. Golab and M.T. Özsu. 2010. Data Stream Management. Morgan & Claypool
Publishers. https://books.google.co.uk/books?id=IMyogd_LF1cC

[17] Goetz Graefe and Harumi Kuno. 2011. Modern B-tree Techniques. Foundations
and Trends in Databases 3, 4 (2011), 203ś402.

[18] Ali Hadian, Behzad Ghaffari, Taiyi Wang, and Thomas Heinis. 2021. COAX:
Correlation-Aware Indexing on Multidimensional Data with Soft Functional
Dependencies. arXiv:cs.DB/2006.16393

[19] Ali Hadian and Thomas Heinis. 2019. Considerations for handling updates in
learned index structures. In AIDM.

[20] Ali Hadian and Thomas Heinis. 2019. Interpolation-friendly B-trees: Bridging
the Gap Between Algorithmic and Learned Indexes. In EDBT.

[21] Ali Hadian and Thomas Heinis. 2020. MADEX: Learning-augmented Algo-
rithmic Index Structures. In AIDB.

[22] Ali Hadian and Thomas Heinis. 2021. Shift-Table: A Low-latency Learned
Index for Range Queries using Model Correction. In EDBT.

[23] Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-off Model Integra-
tion in Spatial Index Structures. In AIDB.

[24] Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-Based
Frequency Estimation Algorithms.. In ICLR.

[25] Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, and David P Woodruff. 2020.
Learning-augmented data stream algorithms. ICLR (2020).

[26] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. 2019. SOSD: A Benchmark for
Learned Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).

[27] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons
Kemper, Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass
learned index. In AIDM.

[28] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In SIGMOD. 489ś504.

[29] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix
tree: ARTful indexing for main-memory databases. In ICDE. 38ś49.

[30] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The Bw-Tree:
A B-tree for new hardware platforms. In ICDE. 302ś313.

[31] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: a fine-
grained learned index scheme for scalable and concurrent memory systems.
Proceedings of the VLDB Endowment 15, 2 (2021), 321ś334.

[32] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
Learned Index Structure for Spatial Data. In SIGMOD.

[33] Anisa Llavesh, Utku Sirin, Robert West, and Anastasia Ailamaki. 2019. Ac-
celerating B+tree Search by Using Simple Machine Learning Techniques. In
AIDB.

[34] Ahmed R Mahmood, Ahmed M Aly, Tatiana Kuznetsova, Saleh Basalamah,
and Walid G Aref. 2018. Disk-based Indexing of Recent Trajectories. ACM
Transactions on Spatial Algorithms and Systems (TSAS) 4, 3 (2018), 1ś27.

[35] Ahmed R Mahmood, Walid G Aref, Ahmed M Aly, and Saleh Basalamah. 2014.
Indexing Recent Trajectories of Moving Objects. In SIGSPATIAL. 393ś396.

[36] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit
Misra, Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmark-
ing Learned Indexes. arXiv:2006.12804 (2020).

[37] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and
Optimizing Learned Index Structures. In SIGMOD. 2789ś2792.

[38] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020.
Learning Multi-dimensional Indexes. In SIGMOD. 985ś1000.

[39] Vikram Nathan, Jialin Ding, Tim Kraska, and Mohammad Alizadeh. 2020.
Cortex: Harnessing Correlations to Boost Query Performance. arXiv preprint
arXiv:2012.06683 (2020).

[40] Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding,
and Alfons Kemper. 2020. The case for learned spatial indexes. In AIDB.

[41] Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon,
Dana VanAken, Lisa Lee, and Ruslan Salakhutdinov. 2019. External vs. internal:
an essay on machine learning agents for autonomous database management
systems. IEEE bulletin 42, 2 (2019).

[42] Jianzhong Qi, Guanli Liu, Christian S Jensen, and Lars Kulik. 2020. Effectively
learning spatial indices. Proceedings of the VLDB Endowment 13, 12 (2020),
2341ś2354.

[43] Naufal Fikri Setiawan, Benjamin IP Rubinstein, and Renata Borovica-Gajic.
2020. Function Interpolation for Learned Index Structures. In ADC. 68ś80.

[44] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2020. Parallel Index-based
Stream Join on a Multicore CPU. In SIGMOD. 2523ś2537.

[45] Manish Singh, Qiang Zhu, and HV Jagadish. 2012. SWST: A Disk Based Index
for Sliding Window Spatio-temporal Data. In ICDE. 342ś353.

[46] Hari Subramoni, Fabrizio Petrini, Virat Agarwal, and Davide Pasetto. 2010.
Streaming, low-latency communication in on-line trading systems. In 2010
IEEE International Symposium on Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW). 1ś8. https://doi.org/10.1109/IPDPSW.2010.5470717

[47] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang,
Minjie Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for
multicore data storage. In Proceedings of the 25th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. 308ś320.

[48] Yingjun Wu, Jia Yu, Yuanyuan Tian, Richard Sidle, and Ronald Barber. 2019.
Designing succinct secondary indexing mechanism by exploiting column
correlations. In SIGMOD. 1223ś1240.

[49] Yu Ya-xin, Yang Xing-hua, Yu Ge, and Wu Shan-shan. 2006. An Indexed Non-
equijoin Algorithm Based on Sliding Windows over Data Streams. Wuhan
University Journal of Natural Sciences 11, 1 (2006), 294ś298.

[50] Shuhao Zhang, Yancan Mao, Jiong He, Philipp M Grulich, Steffen Zeuch,
Bingsheng He, Richard TB Ma, and Volker Markl. 2021. Parallelizing Intra-
Window Join on Multicores: An Experimental Study. In Proceedings of the 2021
International Conference on Management of Data. 2089ś2101.

[51] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX:
Efficient Range Query for LSM-trees. In USENIX Conference on File and Storage
Technologies (FAST). 51ś64.

246


