
ProgressiveQuerying on Knowledge Graphs
Angela Bonifati

Lyon 1 University, CNRS Liris, IUF
Lyon, France

angela.bonifati@univ-lyon1.fr

Stefania Dumbrava
SAMOVAR/IP Paris, ENSIIE

Evry, France
stefania.dumbrava@ensiie.fr

Haridimos Kondylakis
FORTH-ICS

Heraklion, Greece
kondylak@ics.forth.gr

Georgia Troullinou
FORTH-ICS

Heraklion, Greece
troulin@ics.forth.gr

Giannis Vassiliou
FORTH-ICS

Heraklion, Greece
giannisvas@ics.forth.gr

ABSTRACT

The exact evaluation of queries over knowledge graphs encoded
as RDF data has been extensively studied. However, in a wide
array of applications, RDF queries do not even terminate, due to
performance reasons. Notably, queries on public SPARQL end-
points are oftentimes timed out without returning any results.
To address this, we propose a novel solution to the problem of
progressive query answering and introduce the PING system that
implements it on top of SPARK. In our approach, graph query
answering leverages a hierarchical structure, which facilitates
effective data partitioning, thus allowing us to reduce the sizes of
intermediate results and return progressive answers. Moreover, it
allows the RDF query evaluation algorithms to directly locate and
access the different hierarchy levels required for query answer-
ing. Navigating through the hierarchy levels allows expanding or
shrinking query results at different granularities. The extensive
experimental study on real-world graph datasets, with varied
query workloads, shows PING’s effectiveness and efficiency, on
both exact and progressive query answering, and its superiority
to the most relevant baselines.

1 INTRODUCTION

Knowledge graphs are simple yet powerful abstractions for repre-
senting and analyzing semantic relationships between real-world
objects. Key challenges that graph ecosystems [40] face are the
heterogeneity of their data models and the efficiency of query
processing on massive, highly interconnected datasets. While
exact query processing on knowledge graphs represented as RDF
data has received a lot of attention [50], performance problems
are widespread, as shown by empirical analyses of SPARQL query
logs, collected from publicly available SPARQL endpoints [6, 10].
Several queries of endpoints, such as Wikidata and DBPedia, are
timed out because their evaluation on entire RDF graphs is com-
putationally expensive. Nonetheless, distributed big data infras-
tructures, such as Spark, have emerged and offer improved per-
formances. Indeed, Spark has been exploited for efficient query
answering [2], using partitioning techniques, precomputing joins,
and constructing indexes to reduce the amount of data needed
for query answering.

The problem.Despite the success of these approaches, for big
graphs, users still have to wait a considerable time before they see
the first answer to their queries. One of the key reasons behind

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-98318-097-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

this is that query answering on interconnected data typically
requires loading large chunks of the knowledge graph.

On the other hand, approaches have emerged trying to ensure
the termination of queries by introducing restricted servers such
as TPF [47], SAGE [32] and SmartKG [7]. However, these require
a smart client to perform key operations, such as joins, and ship-
ping intermediate results from the server to the client might
require more time to finally evaluate the query. Although pro-
gressive query answering could be implemented to some extent
by progressively returning the results of a pipelined execution
plan, single-pass pipelining might not be always possible (e.g.,
duplicate elimination and aggregate caclulation).

To the best of our knowledge, no existing approach can return

progressive query results to users.

Our solution. We propose a novel approach that uses hier-
archical information to efficiently identify the data fragments
required to return the first part of the answer and to progressively
return the remaining ones, thus enabling progressive query

answering (PQA). While such hierarchies have been success-
fully used to represent RDF graphs as relations [30], ours is the
first work to exploit these to generate fine-grained graph partitions

for progressive query processing and further consumption in big
data infrastructures.

To illustrate the problem at hand, along with our solution, let
us consider the following running example.

Example 1. Fig. 1(a) depicts three example proteins, from the

real-world Uniprot
1
dataset, together with their relations. Proteins

are characterized by numerous properties. For ease of presenta-

tion, we focus on four of them: namely, 𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛, ℎ𝑎𝑠𝐾𝑒𝑦𝑤𝑜𝑟𝑑 ,

𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 , and 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 . The hierarchy of the proteins can be

overly complex and challenging to navigate, and not all the proper-

ties are attached to each protein.

However, a hierarchical structure (which we name characteristic

set (CS) hierarchy as we will explain in Section 3.3) can be com-

puted based on the existing properties (see Fig. 1(b)). Intuitively, this

means that the 𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛 andℎ𝑎𝑠𝐾𝑒𝑦𝑤𝑜𝑟𝑑 properties are specific to
a protein, i.e., they always occur, while 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 and 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠 are

supplementary properties, i.e., further refinements that can some-

times be missing. As such, the proteins can be split into partitions

L1, L2, and L3 (see Fig. 1(c)).
Assume that in the three levels, we also store other associated in-

stances. Fig. 1(c) shows the number of instances, with both 𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛

and ℎ𝑎𝑠𝐾𝑒𝑦𝑤𝑜𝑟𝑑 properties, that can be progressively loaded -

i.e., considering L1; L1 and L2; and L1, L2, and L3 - for a syntheti-
cally generated Uniprot dataset of 3GB. Consider the SPARQL query:

1https://www.uniprot.org/

Series ISSN: 2367-2005 106 10.48786/edbt.2025.09

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.09

Figure 1: Example of a UniProt instance and its hierarchical partitioning into L1, L2, and L3.

SELECT * WHERE {

?x occursIn ?b.

?x hasKeyword ?d.

}

This matches the properties at each level of the partitions, from

the top level L1 to the following levels L2 and L3. For progressive
query answering, we start returning answers first by only visiting

L1 in just 0.4 seconds. Then, in 0.5 additional seconds, we add more

results from level L2, and, after 0.3 extra seconds, we include the

answers from L3, completing querying for all levels in 1.2 seconds

overall. The accuracy (i.e., the percentage of the results only from

certain levels divided by the total number of results) of PQA ranges

from 12%, at the highest level of abstraction (L1), to 100%, when
considering instances at levels L2 and L3. This example gives a

high-level overview of the practical usage of PQA and of the trade-

off between accuracy and runtime incurred when progressively

considering more data.

We present the novel concept of progressive query answering
over the computed levels of a characteristic set hierarchy, applica-
ble to both typed and untyped RDF instances. This characteristic
set hierarchy is mined, based on the properties of the various
instances, to design a multi-level partitioning of the dataset. As
such, we regroup, on the same level, all the instances that have
the same set of outgoing properties. We then exploit the inclusion
relationship of these sets of properties to partition further.

Finally, the multi-layered characteristic set hierarchy is ex-
ploited for progressive query answering. PQA, as opposed to
exact query answering (EQA), allows for carrying out the query
evaluation procedure gradually. We use the query symbols to
navigate the characteristic set hierarchy and the induced multi-
layered partitioning of the dataset. In exploring the partitioning,
we only consider sets of levels that cover all the query symbols,
which we call slices, and that can, thus, produce subsets of the
total answers. As we visit all possible slices, we iteratively load
more levels and return more answers, until the query evaluation
is fully completed. Our system (PING) supports the following:

• Progressive Query Answering. Queries are evaluated
on increasingly larger cumulative partitions, obtained by
drilling down from the top (most abstract) level. The re-
sults are increasingly more refined and accurate.
• Exact Query Answering. The hierarchical partitioning
scheme also allows exact query answering. PING can iden-
tify more precisely the portions of the data graph that
should be loaded for query answering than competitors.
As such, exact query answering is more efficient.

By being able to locate and navigate across the CS hierar-
chy levels, progressive query evaluation algorithms can strike

a balance between accuracy and performance. To the best of our
knowledge, PING is the first approach that supports progressive

graph query answering over CS hierarchies , without requiring an

intelligent client, and that can also perform exact query evaluation.
It has been demonstrated in ISWC 2023 [9].

The paper is structured as follows. Section 2 outlines related
work on flexible, exact, and approximate query answering. Sec-
tion 3 presents our partitioning method, while Section 4 high-
lights its advantages for query answering guided by the CS hier-
archy. PING’s comparative performance is experimentally evalu-
ated in Section 5. Section 6 concludes and outlines future work.

2 RELATEDWORK

As efficient and effective query answering is key to many sci-
entific problems, providing "flexibility" for query answering has
been the focus of many works. In this paper, we focus on RDF
graphs (for an overview of the domain, see [5]).

2.1 Flexible Query Answering

For semi-structured data, the RELAX [23] operator allows
ontology-based relaxation of specified triple patterns, whereas
in other approaches [13, 31] query relaxation is based on user
preferences. Other works like [19] introduce the APPROX opera-
tor, enabling triple pattern replacement by other valid properties.
However, we do not focus on flexible query approximation, i.e.,
on generating and evaluating variants of the original query, but

107

on evaluating the query directly on the knowledge graph. These
approaches are complementary to ours.

2.2 Exact Query Answering

For semantic graphs, several works have focused on exploiting
extracted schemas and summaries for exact query answering, as
surveyed in [12]. S+EPPs [18] exploits bisimulation quotient sum-
maries for summary-based exploration and navigational query
optimization. However, their approach focuses on SPARQL navi-
gational extensions, which are beyond our scope. Other works
focus on storage layouts [11, 22] and on structural indexes [38, 45]
for SPARQL query optimization. Such methods are orthogonal
to ours. ASSG [51] builds summaries of the part of an RDF graph
that is concerned by a particular set of queries, however, without
proper evaluation. Lately, hierarchies are proposed for query-
ing big graphs [17], by identifying regular structures, collapsing
these into supernodes, and building a hierarchy of contracted
graphs. By contrast, our approach is based on discovering the CS
hierarchy of RDF graphs. Also, the authors focus on exact query
answering on a single machine, whereas PING can deliver pro-
gressive answers, focusing on big, parallel data infrastructures.

2.3 Approximate Query Answering

Approximate Query Processing (AQP) is a well-established area
in relational and OLAP databases that focuses on enabling fast
analytics on Big Data, by sacrificing some degree of accuracy
[4, 27]. AQP techniques are typically based on sampling, data
synopses, or a hybrid of the two [28, 34, 35]. For generic graphs,
on the other hand, there have been works focusing on approx-
imation algorithms, such as the shortest distance [20], nearest
neighbors [49], ranking and binary classification [46], etc.

For semantic graphs, there is a limited amount of work in the
field. Progressive query answering, as done by PING, is novel,
albeit reminiscent of approximate query processing (AQP). For
example, some approaches [3, 14, 15, 43] support answer approx-
imation only for a limited set of analytical queries, returning
intermediate approximate results at any time point. Compared
to [43], PING’s partitioning is not driven by fair-use policies, but
by a CS hierarchy, and allows users to control query evaluation.
SaGe [3, 32] relies on probabilistic data structures to approxi-
mate count-distinct queries in a single pass, with strong error
guarantees. Unlike SaGe, PING supports evaluation in multiple
passes, depending on the trade-off between accuracy and speed
users desire. Crucially, unlike AQP approaches, PING guarantees
the absence of false positives by construction and allows users
to progressively refine answer accuracy.

2.4 Restricted SPARQL servers

Restricted SPARQL servers, e.g., SaGe, TPF [47], or SmartKG
[7], ensure BGP queries terminate while preserving SPARQL
endpoint responsiveness. However, they require an intelligent
client that may introduce additional response time overhead.

The Triple Pattern Fragments (TPF) [47] paginates query re-
sults, to avoid server congestion. As such, a page of results can be
obtained in bounded time, pushing query processing workload to
the client side, but causing the unnecessary transfer of irrelevant
data on complex queries with large intermediate results.

SmartKG [7] tries to share the load between servers and clients,
while significantly reducing data transfer volume, by combining
TPF with shipping compressed KG partitions. Still, this requires

an intelligent client, and although compressed, shipping KG par-
titions introduces additional response time overhead.

Web preemption [3, 32] allows a Web server to suspend a
running SPARQL query after a quantum of time and resume the
next waiting query. Suspended queries are returned to users,
who can re-submit them to continue the execution for another
quantum of time. However, it still requires a smart client as the
preemptable server only implements a SPARQL fragment; the
smart Web client has to implement the missing operators such
as joins and projections to recombine the results from the server.

Our approach, however, does not require a smart client. Also,
even if the triple store processing is guaranteed to terminate, the
size of the data transfer in the previous approaches is high and
this might result in a time-consuming execution of the queries.

2.5 RDF Query Answering Using Spark

Some works perform exact query answering on partitions over
big data infrastructures such as Spark. Popular ones are SPAR-
QLGX, S2RDF, and WORQ.

SPARQLGX [21], vertically partitions the RDF datasets to in-
crease query answering efficiency, keeping a file for each predi-
cate in the dataset, which only includes domain and range entries.

S2RDF [42] exploits an extended version of the classic vertical
partitioning. Each extended vertical partitioning table is a set of
sub-tables corresponding to a vertical partition table. The sub-
tables are generated by using right outer joins between vertical
partitioning tables. For query processing, S2RDF transforms a
SPARQL query to an algebra tree, and then it traverses this tree
to produce a corresponding SQL query.

WORQ [29] uses a workload-driven partitioning of RDF triples.
This tries to minimize the network shuffling overhead based on
the query workload, using Bloom filters to determine if an entry
in one partition can be joined with an entry in another.

However, all theseworks adopt simplistic partitioning schemes
and fail to exploit multi-level hierarchical partitioning for exact
query answering, as we show in the experimental evaluation.
Moreover, none of these can perform progressive query answer-
ing. Overall, no other available approach exploits multi-resolution,

modular hierarchical structures, for progressive query answering.

3 HIERARCHICAL PARTITIONING

3.1 High-level architecture

We depict the high-level architecture of our PING system in
Figure 2. The framework comprises two main components, im-
plemented on top of Spark: the partitioner and the query pro-

cessor. The partitioner processes the initial dataset, extracts its
CS hierarchy, and generates hierarchical partitions, as well as
sub-partitions and the necessary indexes. For each one of the
generated sub-partitions, indexes are created and stored in the
Hadoop Distributed File System (HDFS). The query processor
leverages these latter structures for PQA.

3.2 Preliminaries

We focus on RDF datasets, a widely-used standard for publishing
and representing data on theWeb, promoted by theW3C. An RDF
graph G (in short a graph) is a set of triples of the form (𝑠, 𝑝, 𝑜). A
triple states that a subject 𝑠 has the property 𝑝 , whose value is the
object 𝑜 . We only consider triples that are well-formed according
to the RDF specification [48]. These belong to (U∪B)×U×(U∪
B ∪ L), whereU is a set of Uniform Resource Identifiers (URIs),
L is a set of typed or untyped literals (constants), and B is a set

108

Figure 2: High-level architecture of the PING framework.

of blank nodes. We assume an infinite set X of variables, where
U,B,L, X are pairwise disjoint. Blank nodes are an essential
feature of RDF and represent unknown URIs or literal tokens.
The RDF standard also includes the rdf:type property, which
allows specifying the type(s) of a resource. Each resource can
have zero, one, or several types. We will henceforth denote (𝑥 ,
rdf:type, 𝑍) as 𝜏 (𝑥) = 𝑍 .

For querying, we use SPARQL [1], the W3C standard query
language for RDF datasets. A SPARQL query 𝑞 defines a graph
pattern 𝑃 that is matched against an RDF graph G. This is done
by replacing the variables in 𝑃 with elements of G, such that the
resulting graph is contained in G. The basic building blocks of
SPARQL are triple patterns, i.e., elements of (U ∪B ∪X) × (U ∪
X) × (U ∪ B ∪ L ∪ X). A set of triple patterns forms a basic
graph pattern (BGP). It is commonly acknowledged that the most
important aspect for efficient SPARQL query answering is the
efficient evaluation of the BGPs [42], on which we focus in this
paper, leaving the remaining fragments for future work.

Common types of BGPs are star and chain queries. Star queries
are characterized by triple patterns sharing the same variable on
the subject position, whereas chain queries are formulated using
triple patterns where the object variable in each triple pattern
appears as a subject in the one immediately succeeding it. We
henceforth refer to queries that combine star and chain patterns
as complex. To define the semantics of SPARQL queries, let us
consider the partial function ` that instantiates their variables,
i.e., ` : X → U ∪ B ∪ L. The evaluation of a BGP 𝑞 over an
RDF graph G is 𝑞(G) = {` | 𝑑𝑜𝑚(`) = 𝑣𝑎𝑟 (𝑞) ∧ ` (𝑞) ⊆ G},
where 𝑑𝑜𝑚(`) is the subset of X defining ` and 𝑣𝑎𝑟 (𝑞) is the set
of variables in 𝑞. Finally, let 𝑠𝑦𝑚(𝑞) be the U ∪ B ∪ L subset
of symbols in 𝑞. We use 𝑠 , 𝑝 , and 𝑜 to denote terms (variables or
constant symbols) in the subject, property, and object position of
triple patterns and 𝑡 to denote a triple pattern.

3.3 Characteristic Sets

One of the benefits of RDF is its loose structure; one can ex-
tend and modify the schema at will, by adding or deleting new
triples. Neumann and Moerkotte [33] introduced the notion of a
characteristic set (CS) to capture the structure of an RDF dataset.

Definition 3.1 (Characteristic Set). For an RDF graph G, the
characteristic set of a node 𝑠 is 𝐶𝑆 (𝑠) = {𝑝 | ∃𝑜 : (𝑠, 𝑝, 𝑜) ∈ G}.

As such, the characteristic set of a node is the set of all (prop-
erties), i.e., outgoing edges, attached to it. Such characteristic sets
exhibit hierarchical relationships, due to overlaps in their com-
prising sets of properties. To the best of our knowledge, PING is the

first to appropriately leverage the hierarchical structure induced by

characteristic sets for semantic graph partitioning.

We henceforth distinguish between the nodes in the dataset’s
graph that denote types, which we call type nodes, and the rest,
which we call instance nodes.

Example 2. The CSs for Protein instance nodes (Fig. 1) are:

𝐶𝑆 (Protein26474) = {𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛, ℎ𝑎𝑠𝐾𝑒𝑦𝑤𝑜𝑟𝑑}
𝐶𝑆 (Protein43426) = {𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛, ℎ𝑎𝑠𝐾𝑒𝑦𝑤𝑜𝑟𝑑, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒}
𝐶𝑆 (Protein38952) = {𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛, ℎ𝑎𝑠𝐾𝑒𝑦𝑤𝑜𝑟𝑑, 𝑟𝑒 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒, 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑠}

While these nodes are all of Protein type, i.e., 𝜏 (Protein26474)
= 𝜏 (Protein43426) = 𝜏 (Protein38952), note that they all have

different characteristic sets, as seen in the example.

3.4 Extraction of the CS hierarchy

Characteristic sets help extract a CS hierarchyH from existing
instance nodes.

Definition 3.2 (CS Subsumption). Given two instance nodes a1
and a2, 𝐶𝑆 (a1) subsumes 𝐶𝑆 (a2) when 𝐶𝑆 (a1) ⊂ 𝐶𝑆 (a2).

Definition 3.3 (CS Hierarchy H). 𝐶𝑆 subsumption creates a
partial hierarchical ordering, such that if 𝐶𝑆 (a1) ⊂ 𝐶𝑆 (a2), then
𝐶𝑆 (a1) is a parent of𝐶𝑆 (a2). Formally, a𝐶𝑆 hierarchy is a graph
latticeH = {𝑉H, 𝐸H}, such that 𝑉H ⊆ 𝐶 and 𝐸H ⊆ (𝑉H ×𝑉H),
where 𝐶 is the set of all the CSs.

The key idea is that, based on the connectivity of instances,
we construct a CS hierarchy and use it to index and partition the
dataset. To do so, we visit all instance nodes of the input graph
once, identifying their CSs.

Example 3. Note that: 𝐶𝑆 (Protein26474) ⊂
𝐶𝑆 (Protein43426) ⊂ 𝐶𝑆 (Protein38952). Hence, H
will be enriched by those three CSs: the first in level one,

the second, in level two, and the last, in level three. An-

other protein, e.g., Protein67453, where we have that

𝐶𝑆 (Protein67453) = {𝑒𝑛𝑐𝑜𝑑𝑒𝑠, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑠𝑆𝑖𝑔𝑛𝑎𝑙, 𝑟𝑒𝑎𝑐𝑡𝑠},
would also be placed in level one, as there is not any other instance

𝑥 with 𝐶𝑆 (𝑥) ⊂ 𝐶𝑆 (Protein67453).

3.5 Hierarchical Partitioning

Let us fix an arbitrary RDF graph G. We also denote the extracted
CS hierarchy withH , the induced RDF graph partitioning with 𝐿,
and withH𝑖 and, respectively, 𝐿𝑖 , their corresponding contents at
level 𝑖 . Based onH , we construct a multi-level partitioning 𝐿 of
G comprising partitions L𝑖 ; these regroup all instances that have
the same characteristic set, which belongs toH𝑖 . Note that the
assignment to a partition for a dataset instance does not depend
on it being typed, but solely on its CS, which always exists. We
henceforth use the terms "partition" and "level" interchangeably.

109

In the resulting hierarchical partitioning, the highest (most ab-
stract) level is a coarse-grain representation and the lower levels
correspond to refinements of the initial graph. The partitions are
computed once, by assigning instances to their respective level,
based on their CS. Next, we state the modularity and losslessness

properties of our partitioning, which hold by construction.

Theorem 3.4 (Modularity). Given a graph G and the gener-

ated CS hierarchyH , the result hierarchical partitioning scheme is

modular, i.e., 𝐿𝑖 ∩ 𝐿𝑗 = ∅, for all 𝑖, 𝑗 ≤ |H |.

Proof. The CS of a dataset instance is unique by construction.
Hence, each instance will be assigned to a unique hierarchy level.
This implies hierarchy levels cannot overlap and, thus, that the
CS hierarchy itself is modular. □

Theorem 3.5 (Losslessness). Given a graph G and a CS hierar-

chyH , the result partitioning scheme is lossless, i.e., 𝐿 =
⋃

𝑖≤ |H| 𝐿𝑖 .

Proof. Each dataset instance has a CS and is assigned a spe-
cific partition based on it. Due to this, no information is lost by
construction with our approach. □

3.6 Sub-Partitioning

As described, the CS hierarchy is used to assign instances to a
specific level, i.e., to a specific partition. On top of this, we also im-
plement, for each partition, a vertical partition (VP) step, called
sub-partitioning, to further reduce the size of the data touched at
query answering. For this, we split the triples of each partition
L𝑖 , into multiple vertical partitions L𝑖 [𝑝], one file per property 𝑝 .
The vertical partitions are stored as parquet files in HDFS. Each
vertical partition contains the subjects and the objects for a single
property, enabling a more fine-grained selection of data at query
time. Consequently, when looking for a specific property, we do
not need to access the entire data of the level storing instances
with this property, but only the specific sub-partition at that level
with the related property. As shown in Section 5, this minimizes
data access, leading to faster query execution times.

3.7 Indexing

To speed up query evaluation, we generate custom indexes, so
that the necessary level sub-partitions can be directly identified
during query execution. As such, we leverage the CS hierarchy
to construct property, subject, and object indexes (VP, SI, and
OI, respectively). Specifically, as our partitioning approach is
based on the hierarchy of CSs, which includes the corresponding
sets of their properties, initially, we index for each property the
partitions it is primarily assigned to (VP). For each instance, we
also index the partition inwhich it is locatedwhen it is in a subject
position (SI) and an object position (OI) respectively. Thus,
we can directly identify to which partitions each such instances
belong. The aforementioned indexes are stored in HDFS and
are loaded in the main memory of Spark as soon as the query
processor is initialized.

Example 4. In Fig. 3 we present the SI, OI, andVP indices

constructed in Fig. 2. For example, we record, among others, that

Protein26474 is located on L1, in the SI index, and on L1 and
L2, in the OI index. Also, we can access the levels on which each

property occurs with theVP index. For example, in theVP index,

we record that 𝑜𝑐𝑐𝑢𝑟𝑠𝐼𝑛 appears on L1, L2, and L3, whereas the
Protein43426 is located in L2, as a subject, and Keyword789, in
L3, as an object.

Figure 3: Indexes available for our running example.

3.8 Partitioning Algorithm

Algorithm 1 presents the overall partitioning. Initially, we con-
struct the CS hierarchyH (line 2). Then, for each triple (lines 3-4),
we identify the hierarchy level it should be assigned to based on
its subject’s CS (line 5). Next, we build the layering of our dataset:
we collect on the same partition all the instances with the same
CS hierarchy level and update the computed partitioning (lines
6-7) adding the corresponding triples of instances located in the
subject position. On individual levels, for each property of its
instances, we add the corresponding triple parts (domain and
range) into the proper sub-partitions, named after the property
(lines 8-9). Finally, we add the location of the subject, object, and
property to the three indexes (lines 10-12).

The algorithm needs to do one pass over all triples in order
to calculate the CS hierarchy in line 2 and then another pass to
assign the instances into the various partitions/sub-partitions
and generate the necessary indexes. The two steps can be clev-
erly combined and be performed into one pass over the data by
keeping appropriate pointers in the main memory and swapping
them when needed. Hence, the complexity of the algorithm is
linear, i.e., 𝑂 (𝑛) where 𝑛 is the number of triples in the graph.

Further as all triples are allocated into a single partition and
subpartition, no space overhead is introduced for the raw dataset.
In fact, as in the sub-partitioning phase, we remove the property
names from the triples - the file storing that sup-partitioned
is named after that property, and the overall required space is
reduced.VP, SI, and OI indexes are common in triple stores
and introduce minimal space overhead in addition –for each
resource we need to keep its number and a few numbers with
the partitions it exists.

Note that although an instance might have multiple types, it
will always have only one CS and, hence, be uniquely assigned to
a level/partition. We consider a typing relationship as yet another
relationship, not differentiated from all others. As such when
typing information exists for a specific instance, this information
is also added to the partition where that instance is allocated. If
no such information exists for the instance, no additional typing
information is required.

This partitioning scheme has two key benefits. First, instances
with the same CS are assigned to the same level and then sub-
partitioned according to their properties, highly minimizing the
amount of data that the queries targeting it have to load. Second,
it enables PQA, as volumes of data, spanning various CSs, are
distributed in different partitions.

4 PROGRESSIVE QUERY ANSWERING

Next, we explain how PING performs progressive query answer-
ing. Let us fix a set of levels 𝐿 that partitions G, as presented in
Section 3, and a query 𝑞. The main idea behind PING is that it

110

Algorithm 1 Partitioning(G)
Input: G: a graph dataset;
Output: 𝐿: a set of levels; VP, SI, OI: vertical partitioning, subject,
and object indexes

1: 𝐿 ← ∅,VP ← ∅,SI ← ∅,OI ← ∅
2: H ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐶𝑆𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦 (G) ⊲ Extraction of CS

hierarchy
3: for all 𝑡 ∈ G do

4: (𝑠, 𝑝, 𝑜) ← 𝑡

5: 𝑖 ← 𝑔𝑒𝑡𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑦𝐿𝑒𝑣𝑒𝑙 (H ,𝐶𝑆 (𝑠))
6: 𝐿𝑖 ← {(𝑠, 𝑝, 𝑜) ∈ G | 𝐶𝑆 (𝑠) = 𝑖}
7: 𝐿 ← {𝐿𝑖 } ∪ 𝐿 ⊲ Partitioning
8: for all 𝑠, 𝑜, 𝑝 ∈ 𝐿𝑖 do
9: 𝐿𝑖 [𝑝] ← 𝐿𝑖 [𝑝] ∪ {𝑠, 𝑜} ⊲ Sub-Partitioning
10: VP[𝑝] ← {𝑖} ∪ VP[𝑝] ⊲VP Indexing
11: SI[𝑠] ← {𝑖} ∪ SI[𝑠] ⊲ SI Indexing
12: OI[𝑜] ← {𝑖} ∪ OI[𝑜] ⊲ OI Indexing
13: end for

14: end for

15: return 𝐿,SI,OI,VP

exploits precomputed indexes to identify, and gradually visit, the
levels in 𝐿 that should be accessed for query answering. As long
as all the symbols in 𝑞 appear on a given level, 𝐿𝑖 , this can be
used to partially answer 𝑞. This is reflected in the key definition
of query safety given below.

Definition 4.1 (Safety). A symbol 𝑟 is safe on a set of levels 𝑆
from 𝐿 if it occurs on at least one level. A triple 𝑡 is safe on 𝑆 if
all its symbols are safe on 𝑆 . A query 𝑞 is safe on 𝑆 if all its triple
patterns are also safe.

Definition 4.2 (Slice). We call a set 𝑆 of sub-partitions from 𝐿 a
slice for a query 𝑞, a symbol 𝑟 , or a triple 𝑡 , if these are safe on 𝑆 .
𝑆 is a minimal (respectively, a maximal) slice, if exists no slice 𝑆 ′
exists, such that 𝑆 ′ ⊂ 𝑆 (respectively, 𝑆 ⊂ 𝑆 ′).

Leveraging slicing and, hence, respecting safety, we can pro-
duce partial answers, by only focusing on specific levels. Note
that due to the safety property PING imposes, a query is only
evaluated on a subset of its slices. This ensures that any partial
results returned during PQA are still exact, i.e., correspond to
subsets of the full result. In particular, each tuple outputted by
PQA is not partial, but a valid answer to the original query.

We henceforth fix a query 𝑞 and denote its slices 𝑆 and 𝑆 ′.

Lemma 4.3 (PQA Monotonicity). If 𝑆 ′ ⊆ 𝑆 , 𝑞(𝑆 ′) ⊆ 𝑞(𝑆).

Proof. By monotonicity of the core SPARQL fragment we
consider, i.e., covering select, project, join, and union. This, in
turn, follows from the monotonicity of the corresponding rela-
tional algebra fragment [39]. □

Lemma 4.3 thus tells us that the evaluation of a query can be
performed gradually, on a set of its slices, and that it leads to
increasingly more accurate results, the more of these we consider.
The soundness of PQA on every slice, i.e., the fact that we only
obtain (subsets of) correct results, holds by the lemma below.

Lemma 4.4 (PQA Boundedness). 𝑞(𝑆) ⊆ 𝑞(G).

Proof. By construction and definition of query safety. Since
𝑆 is a slice for 𝑞, it follows that 𝑞 is safe on 𝑆 and, hence, that the
query can be evaluated on 𝑆 since all its triples belong to it. As

𝑆 ⊆ 𝐿 and 𝐿 is a partition of G, we have that 𝑆 ⊆ G. Given that 𝑞
is monotonous, by Lemma 4.3, 𝑞(𝑆) ⊆ 𝑞(G). □

Considering the entire set of slices for the query, i.e., its maxi-
mal slice, we obtain its exact, lossless evaluation. As such, PING
can also be used for EQA.

Theorem 4.5 (EQA Soundness and Completeness). It holds
that 𝑞(𝑆) = 𝑞(G), where 𝑆 is the maximal slice for 𝑞.

Proof. Aswe have showed the query evaluation in our setting
is monotonous (Lemma 1) and bounded (Lemma 2), PQA admits
a fixed point [44]. Following the fixed point semantics [37] of
our SPARQL fragment, this is the unique minimal answer. □

Algorithm 2 captures the PQA of a query 𝑞 over a hierarchical
partitioning of a graph G. We iterate over all the triple patterns
in 𝑞 and inspect all their symbols. Depending on whether they
correspond to a predicate or to a subject or object constant, we
inspect the corresponding index structures and collect the set of
all sub-partitions where the instances are located.

We take the intersection of all such sub-partition sets and
compute the minimal slice of the triple, i.e., the corresponding
minimal set of duplicate-free partitions in the levels that cover its
symbols (lines 2-3). Using this, we determine the set of all slices
of 𝑞, i.e., the sets of sub-partitions that contain all of its symbols.
Hence, we iterate over the cartesian product of the individual
triple pattern slices (line 5). For every element, we take the union
of its levels and build each query slice 𝑆 (line 6). We then call
EQA (i.e., Algorithm 3) and add 𝑆 to the set of visited levels 𝐶
(line 7).

Algorithm 2 PQA(G, 𝐿, 𝑞,VP,SI,OI)
Input: G: graph; 𝐿: G partitioning (set of levels); 𝑞: query;
VP, SI, OI: vertical partitioning, subject, and object indexes
Output: Φ – the answers to 𝑞

1: Φ← ∅, 𝐶 ← ∅, I ← VP ∪ SI ∪ OI ⊲ initialize
2: for all 𝑡 ∈ 𝑞 do ⊲ compute triple pattern slices
3: 𝐻𝐿(𝑡) ← ⋂

𝑟 ∈𝑠𝑦𝑚 (𝑡)
{𝐿𝑖 [𝑗] | 𝑖 ≤ |𝐿 |, 𝑗 ∈ I[𝑟]}

4: end for

5: for all 𝑆𝑡 ∈
>
𝑡 ∈𝑞

𝐻𝐿(𝑡) do

6: 𝑆 ← ⋃
𝑡 ∈𝑞
{𝑙 | 𝑙 ∈ 𝑆𝑡 } ⊲ query slice

7: Φ← Φ ∪ EQA(𝑆 , 𝑞, 𝐶) ⊲ accumulate query answers
8: 𝐶 ← 𝑆 ∪𝐶 ⊲ mark slice as visited
9: end for

10: return Φ

Example 5. To illustrate PQA, consider the query 𝑞:

SELECT * WHERE { ?x occursIn ?b.

?x hasKeyword <Keyword789>.

?x interacts ?y. }

To evaluate it, we inspect each triple pattern, identifying

the corresponding levels/partitions and sub-partitions indicated

by our indexes and properties. For the first triple, 𝑇0, as the

property occursIn appears on L1, L2, L3, we have 𝐻𝐿(𝑇0) =

{𝐿1 [occursIn], 𝐿2 [occursIn], 𝐿3 [occursIn]}. For the second

triple, 𝑇1, we consider the property hasKeyword and the sym-

bol Keyword789. We know that set of levels for hasKeyword
is {𝐿1, 𝐿2, 𝐿3}, according to VP index, and that the one

111

Figure 4: Computing the EQA of 𝑞 on its maximal slice.

for Keyword789 is {𝐿3}, according to the OI index. As we

choose the intersection of the set of sub-partitions, we have

𝐻𝐿(𝑇1) = {𝐿3 [hasKeyword]}. For 𝑇2, we have that 𝐻𝐿(𝑇2) =

{𝐿3 [interacts]}, since the set of levels for interacts is {𝐿3}.
The set of all query slices 𝐻𝐿 is thus: 𝐻𝐿(𝑇0) × 𝐻𝐿(𝑇1) × 𝐻𝐿(𝑇2).
For each of its elements, we take the union of their sub-partitions

(Algorithm 2, line 6) and pass the resulting updated slice for EQA.

Algorithm 3 implements EQA. For a slice 𝑆 , it loads its unvis-
ited levels (lines 2-3), calls query evaluation (line 4), and returns
the result (line 5).We illustrate how PING progressively computes
query answers by sequentially calling EQA.

Algorithm 3 EQA(𝑆 , 𝑞, 𝐶)
Input: 𝑆 : slice (set of levels); 𝑞: query;𝐶 : visited set of levels
Output: Φ – the answers to 𝑞

1: Σ← ∅ ⊲ initialize
2: for all 𝐿 ∈ 𝑆 \𝐶 do ⊲ iterate over unvisited slice levels
3: Σ← Σ ∪ 𝐿 ⊲ build cumulative slices
4: end for

5: Φ← 𝑞(Σ ∪𝐶)
6: return Φ

Example 6. Revisiting our running example, since our accu-

mulator 𝐶 is empty the first time EQA is called, we first compute

a first partial answer considering only the slice 𝐿1 [occursIn] ∪
𝐿3 [hasKeyword ∪ 𝐿3 [interacts] and adding it to 𝐶 . In the next

iteration of PQA, the EQA algorithm is called on the slice addi-

tionally containing the unvisited 𝐿2 [occursIn]. We complete the

procedure by adding the only unvisited sub-partition from the last

slice, 𝐿3 [occursIn], to the accumulated answer and evaluate 𝑞

on the entire dataset returning all answers. Note that Algorithm 3

will terminate by being called on the maximal slice of 𝑞, as we

iteratively accumulate (in 𝐶) all the slices on which 𝑞 is safe. Note

that we can directly compute the EQA of 𝑞 on G by passing the

maximal slice to the algorithm from the start. We illustrate this in

Fig. 4. As such, Fig. 4(b) illustrates the vertical partitions and the

levels that PING determined should be used. PING leverages these

to formulate the SQL sub-queries shown in Fig. 4(c), joining their

results (see Fig. 4(d)) and computing the final answers.

The combined complexity of evaluating a query 𝑞

on our hierarchical multi-level dataset partitioning 𝐿 is
𝑂 (|𝑃 | · (𝑙𝑜𝑔 |𝑃 | + Σ𝐿𝑖 ∈𝐿𝑙𝑜𝑔 |𝐿𝑖 |)), where |𝑃 | is the number of triple
patterns, following the complexity of evaluating BGP fragments
of SPARQL [36].

Implications for aggregate queries and complex datasets.
Notably, the CS hierarchy of a real dataset might be very com-
plex. However, this is a rather positive fact, as the dataset can
be split into more partitions, enabling fine-grained PQA. Fur-
ther, although we focus on BGP queries, downstream aggregate
query processing can also benefit from progressive querying,
continuously refining the answer as time goes on, progressively
improving its quality.

5 EVALUATION

We study the performance and coverage of PING on RDF graphs
of various sizes, with diverse hierarchy levels. These highlight
the effectiveness of PQA, which strikes a balance between query-
answering efficiency and coverage. We also assess the perfor-
mance of PING on EQA. Note that PING’s PQA and EQA capabili-
ties have been demonstrated live on dedicated scenarios [9]. Also,
PING’s codebase is open source and the datasets and queries used
in our experiments are available online2.

5.1 Setup

The experiments were conducted using a cluster of 4 physical
machines running Apache Spark 3.0.0, a popular MapReduce
framework. Each machine is equipped with 235GB of memory,
400GB of storage, and 38 cores running Ubuntu 20.04.2 LTS. In
each machine, 10GB of memory was assigned to the memory
driver, and 200GB was assigned to the Spark worker.

5.2 Datasets & Workloads

To evaluate PING, we used three synthetic datasets (Uniprot, Shop,
and Social) of various sizes, obtained using the gMark [8] graph
instance and query workload generator, the LUBM synthetic
dataset and two large-scale real-world datasets (DBpedia and
YAGO). Their characteristics are provided in Table 1.

Uniprot encodes the schema of the homonymous dataset, en-
coding protein sequences and their functional information.

Shop simulates the default schema of the Waterloo SPARQL
Diversity Test Suite (WatDiv)3, with purchased products and the
customer information.

Social encodes the fixed schema of the LDBC Social Network
Benchmark [16], representing a social network with people and
the messages they post along with their likes.

LUBM is a benchmark focusing on university domain.
DBpedia includes version 3.8 of the homonymous dataset, and

YAGO is a database with knowledge about the real world.
For the three synthetic datasets, we produce 60 queries (20

star, 20 chain, and 20 complex). We generated 2000 queries using

2https://github.com/giannisvassiliou/PING-EDBT-2025
3https://dsg.uwaterloo.ca/watdiv/

112

Figure 5: Data distribution across hierarchy partitioning levels for all datasets.

Star Chain Complex

Dataset Size Triples

Min Max Min Max Min Max

Uniprot 3GB 2.1M 2 5 2 5 2 5
13GB 23MShop 100GB 1B 2 5 2 5 3 5

Social 18GB 50M 3 5 3 4 1 5
LUBM 30.1GB 173.5M 2 5 1 2 4 6
YAGO 12GB 82M 3 6 0 0 4 13
DBpedia 30GB 182M 1 5 1 4 4 5

Table 1: Dataset & Query workload characteristics

the gMark benchmark for each category and randomly picked
the 20 first that returned an answer when issued to the corre-
sponding endpoint. LUBM comes with 14 benchmark queries (6
star, 3 chain, 5 complex). For YAGO, we retrieved 15 queries (4
star, 11 complex) previously used for benchmarking in [29]. Al-
though in those categories plain chain queries do not exist, large
chains are evaluated within the complex queries. For DBpedia,
similarly to gMark, we randomly selected 60 BGP (20 star, 20
chain, 20 complex) queries, using the FEASIBLE benchmark gen-
erator [41], based on real-world query logs. The query workload
characteristics are shown in Table 1 in terms of their minimum
and maximum number of triple patterns.

5.3 Competitors

As PING is the first to implement progressive, multi-resolution
query answering for RDF datasets, we do not have direct com-
petitors. However, in the extreme case that our system is used for
exact query answering, we compare our approach with other rep-
resentative systems focusing on exact query based on Spark, i.e.,
S2RDF v1.1 [42] and WORQ v0.1.0 [29]. We have chosen these
since, in their respective papers, these have been shown to

greatly outperform other state-of-the-art competitors, i.e.,

SHARD, PigSPARQL, Sempala, and Virtuoso Open Source

Edition v7 [42].
S2RDF uses Extended Vertical Partitioning, whereas WORQ

uses Bloom filters on top of vertical partitioning to efficiently
reduce data access for query answering. For a fair comparison, in
both systems, we disabled caching of precomputed joins, as this
is orthogonal to data partitioning and indexing, studied in this
paper. All systems included in the comparison, i.e., PING, S2RDF,
andWORQ only accept BGP queries for evaluation, whereas all of

them use Parquet files for storing the data. Finally, a time-out of
twenty-four hours was selected, i.e., after this time lapse without
finishing the execution, each experiment was stopped.

5.4 Metrics

We use the following evaluation metrics.
Query execution time:We evaluate the efficiency of the various

configurations of our algorithm.
Data access: We analyze the rows that should be accessed to

perform query answering.
Coverage: As we partition the initial graph, when the loaded

levels do not amount to the maximal slice of a query, we lose
information when we evaluate it. We use the following formula
to measure coverage: |𝑞 (𝑆) ||𝑞 (G) | , where |𝑞(𝑆) | and |𝑞(G)| denote the
number of answers obtained when evaluating 𝑞 on a set of levels,
up to and including, the slice 𝑆 and, respectively, on G.

Further, when our system is used for EQA, apart from query
execution time and data access, we also use the following metrics
to compare its performance.

Preprocessing time:We evaluate the efficiency of the algorithms
for building the (sub)partitions and indexes.

Reduction factor: We evaluate the space that each system out-
puts and uses in terms of bytes for the compressed Parquet files.
The reduction factor is equal to the size of the partition (S) pro-
duced by a system divided by the size of the initial dataset.

In calculating the aforementioned metrics in each case, we
report an average of 10 executions.

5.5 Results on Progressive Query Answering

5.5.1 Results on Data Distribution. The distribution of the
datasets in the various levels is shown in Fig. 5. As shown for
the most synthetically generated datasets, the CS hierarchy has
5 − 7 levels, whereas we have 11 for Social, 17 for DBpedia, and
15 for YAGO. Regarding the spread of triples across levels, we no-
tice a great variability, which is, however, dataset-specific. Note
that gMark allows us to control the characteristics of the gener-
ated instances and query workloads. Hence, our benchmarks are
structurally diverse and provide interesting use cases.

5.5.2 Results onQuery Execution. Next, we present the results
on progressive query answering for the various datasets we use.

Figure 6 shows the runtime, loaded data amount, and coverage
of star, chain, and complex queries, varying the number of slices

113

Figure 6: Results on PQA runtime, loaded rows and coverage of the various datasets.

used to answer them, as well as execution time as more data are
loaded on our datasets. We discuss the results per dataset.

Shop. According to Fig. 6, the more slices we visit, the more
the execution time increases. This is in line with the data access
trends. Similarly, the more slices we visit, the more the coverage
improves. However, at the fifth slice, we achieve 100% coverage,
thus avoiding us visiting the last slice. We also observe different
behaviors depending on the query type: chain queries are almost
completely answered by visiting four slices, on which star queries
are answered much faster than other query types, respectively
chain and complex queries. These tendencies hold when scaling

to 1 billion triples (shop100). The larger dataset requires more
execution time; everything else is similar to the 13GB version.

Uniprot. For the UniProt dataset, we observe similar trends,
despite now having only five slices. We record full coverage
already on four slices and evaluate chain (and star) queries faster.

Social. For the Social dataset, we need to inspect 10 slices (out
of 11) to reach 100% coverage, where execution time stabilizes
after four slices. Although Social contains more levels, we can
still reach full coverage after a few slices.

LUBM. LUBM generates instances consistently; as such, we only
have two levels, which are both required in order to reach 100%

114

coverage for all queries. Nevertheless, we can retrieve the re-
sults from the first results faster, showing that even in highly
structured datasets PQA has significant benefits.
DBpedia. DBpedia includes many instances without a prede-
fined schema, as triples are introduced by various users. Hence, it
exhibits includes numerous levels (more than double that in other
datasets). We observe that chain queries reach higher coverage
values and run faster than the other query types. Compared to
other datasets, to achieve coverage close to 100%, PING needs
to visit almost all the 17 slices, with a comparable increase in
execution times and loaded rows. Also, chain queries in DBpedia
are typically small (one to four triple patterns), as also confirmed
by previous analysis of real-world logs [6]. Their execution time
stays steady across PQA, even with many slices. This is not the
case for star and complex queries on DBPedia, whose execu-
tion time increases with the number of levels. Conversely, chain
queries quickly access a large percentage of the overall number
of rows needed for EQA. This results in a significant increase in
the percentage of data loaded at the early slices and in coverage,
compared to star and complex queries.
YAGO. Similarly to DBpedia, YAGO is also another real dataset
with many levels (14). The benchmark queries were significantly
larger than other datasets (7 triple patterns on average), but we
can observe a similar tendency as DBpedia queries. Star queries
are really fast when compared to complex ones, despite the fact
that they load a significant number of triples, where both cate-
gories require level 13 to be almost 100% answered.
Average execution time as returned data increases. In Fig. 6
we also plot the average execution time as the data accessed
for query answering increases. In all datasets, we observe the
benefits of our progressive approach, as it can guarantee that the
query execution time increases linearly with the size of the data.

5.6 Results on Exact Query Answering

In the extreme case that PING is used for exact query answering,
as already mentioned, we compare with WORQ and S2RDF.

5.6.1 Preprocessing Time. The times required for preprocess-
ing the various datasets and systems are presented in Fig. 7.

For PING, the time scales based on the complexity and the size
of the datasets and ranges between 8 minutes, for the smallest
dataset (Uniprot), to 273 minutes, for the most complex one (DB-
pedia). For the same dataset (Shop), its largest version requires
significantly more time, as more triples have to be examined and
placed in the respective partitions. In real datasets (DBpedia and
YAGO), high variations in the instances generate far more CSs
than the synthetic ones, leading to large partitioning times.

Competitors also require a significant preprocessing time for
partitioning and indexing the datasets. In most cases, PING is
considerably faster than competitors, except for the smallest one
(Uniprot) and the most structured one (LUBM). Both S2RDF and
WORQ fail to process the most complex dataset (DBpedia), timing
out after one week. However, partitioning is only executed once
and offline before query answering, and, as such, is transparent
to the users.

5.6.2 Reduction Factor. Fig. 7, at the bottom, presents the re-
duction factor for the various systems.WORQ adopts a dictionary
compression policy for data storage and, as such, the resulting
Parquet files occupy a small fragment only of the initial file with
a reduction factor ranging between 0.27 and 0.42. S2RDF intro-
duces additional extended vertical partitions and as such in most

Figure 7: Preprocessing time and reduction factor.

cases requires additional storage, reaching a reduction factor of
up to 1.94 of the initial dataset for Shop13. PING, however, adopts
a sub-partitioning approach, (i.e., a vertical partitioning inside
the partitions) that minimizes space, since predicates are omitted
from the generated vertical partition tables (i.e. the predicates).
Hence, the reduction factor is always smaller than 1, ranging
from 0.79 to 0.83.

5.6.3 Query Execution Time. We report our results for exact
query answering, comparing PING with S2RDF and WORQ. For
space reasons, we only present results on the dataset with the
larger queries (YAGO) and the largest one (Shop 100), as the
trends are similar to the other ones. In Fig. 9, we report the
runtimes of query execution and the number of triples that had
to be accessed for both datasets.
YAGO. For YAGO we again use all 14 benchmark queries and
report the average of five executions. Unfortunately, all queries
are quite large in terms of the number of triple patterns. As such,
they require all levels for query answering, making the benefits of
accessing only a few partitions less apparent. Nevertheless, real
user queries are usually smaller [10] and, as shown in Fig. 9, PING
outperforms WORQ in all cases, and has a similar performance
to S2RDF. Our system is able to load less triples than S2RDF in
order to answer the complex queries, however, precomputing
joins gives a small benefit over accessing less triples. Note that
join precomputation is orthogonal to our method and could be
further leveraged to optimize PING, whereas if we disable join
precomputation PING significantly outperforms S2RDF in all
queries.
Shop 100. In order to demonstrate the benefits of our system
when we query target specific levels in the largest dataset, i.e.
the Shop 100, we use the random query generator to select the
first five queries targeting a specific number of levels from the
2-6 partitions (in total 25 queries). As long as the queries require
accessing the entire set of levels where a specific resource exists,

115

Figure 8: Execution time, loaded rows, and coverage for the visited Q55 slices.

Figure 9: Execution time and triples visited for EQA on Shop 100 GB and YAGO.

our partitioning policy, in essence, is reduced to a vertical parti-
tioning scheme - adopted by WORQ and S2RFD. Thus, execution
times for queries that require access to the entire set of levels that
include the symbols in those queries are similar. Note that the
performance of WORQ is always worse than S2RDF, as Bloom
filters unsuccessfully try to reduce the visited data. In essence, a
minimal query optimization policy, as implemented by S2RDF,
is enough to accelerate it (perform small joins first). However, if
instances are available in the query, PING is able to focus on the
specific levels that include this information and only accesses a
subset of the entire vertical partition. This drastically improves
query execution efficiency. For example, when PING only ac-
cesses two levels out of six, PING is one order of magnitude

faster than both S2RDF and WORQ, visiting two orders of

magnitude fewer triples for EQA.

5.7 Discussion of a real use case from DBpedia

To better illustrate PING’s PQA method, we conducted a qual-
itative study on a real query from DBpedia, i.e., Q55. We have
chosen this query since it is a complex query, with four triple
patterns, requiring all DBpedia levels (as seen in Fig. 8) for its
evaluation. As shown below, the query retrieves the types of
companies founded in California and the products they produce:

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

Q55: SELECT * WHERE {

?company rdf:type ?company_type.

?company dbo:foundationPlace dbr:California.

?product dbo:developer ?company.

?product rdf:type ?product_type. }

To evaluate Q55, PING identifies the levels of its symbols
using the available indexes, shown in Table 2. For the first
triple pattern, we need to visit all levels. For the second,
since dbo:foundationPlace is available in levels 2-13, and
dbr:California is available as an object 2-17, we only need

Symbol Levels
rdf:type 1-17

dbo:foundationPlace 2-13
dbo:developer 2-11
dbr:California 2-17

Table 2: Symbol levels of DBpedia’s Q55 query.

to visit levels 2-13. For the third triple pattern, we need to visit
levels 2-11, and for the fourth, we need to visit all levels.

Next, the algorithm identifies the slices needed for evaluation.
For the first slice, considering the first and the last triple pattern,
PING loads the L1[type] vertical sub-partition, for the second
triple pattern, the L2[foundationPlace] sub-partition, and for
the third triple pattern, the L2[developer] sub-partition. As seen
in Fig. 8, the selected sub-partitions do not have rows that can
be joined, hence PQA coverage on slice 1 is zero. For slice 2, we
additionally load L1[type] ∪ L2[type], needed for the first and
last triples. Again, there are no rows that can be joined, the slices
are formulated one by one, and query evaluation is progressive.
Slices that do not offer results are quickly skipped, and execution
time increases as soon as results emerge, improving the coverage
progressively.

Note that the partitioning is fixed and users do not have control
over it. However, as outlined in Section 6, it leaves the possibility
of returning first any subset of query slices. For example, if one
knows that the slice corresponding to level 2 has the most triples,
the user could choose it as the starting point for PQA.

Shifting our attention to the results in Fig. 8, the coverage is
almost zero for the first 9 slices. This happens as the loaded rows
are limited (as shown in the loaded rows diagram of Fig. 8) and
they cannot be joined among the tables corresponding to the
different predicates. However, after slice 9, more data that gives
results is accumulated and the coverage gradually improves. This
also requires more execution time.

116

The qualitative study highlights additional advantages of PQA
over (bulk) EQA. Namely, the breakdown of query evaluation per
level provides more insights and renders it user-controllable.

6 CONCLUSIONS

We have presented PING, the first system for progressive query
answering over KGs that does not use an intelligent client.
PING uses a CS hierarchy to partition KGs and progressively
evaluate queries. As such, it offers minimal latency and allows
trading query accuracy for efficiency. Experiments on synthetic
and real-world datasets confirm the flexibility of our solution,
which can transform KGs into partitions and progressively
evaluate these. Moreover, we show that PING has the potential
to dominate competitors, even when used for exact query
answering, in several cases being orders of magnitude faster
than competitors.

6.1 Limitations

Progressive query answering is only supported for monotonic
queries that allow retaining the previously produced results when
considering additional levels. Non-monotonic queries (e.g. with
negation) are currently not allowed to be progressively evaluated.

Furthermore, PING currently considers that datasets are static
and do not regularly update, which might not be true in prac-
tice [24–26]. Handling large dynamic graphs would require an
incremental update for the existing partitioning scheme, which
although trivial for instances that have a CS already in the CS
hierarchy, becomes complicated when new levels should be in-
troduced in the hierarchy.

Finally, for aggregate queries, PING would need to inspect
all relevant slices to estimate the final accurate result, doing
away with the benefits of PQA and requiring an approximate
query-answering approach, which is beyond our scope.

6.2 Future Work

We plan to render PING capable of also handling navigational
queries involving recursion. In this setting, the evaluation would
require multiple iterations across the impacted levels, which
might impact the overall benefit of the approach. To handle this
efficiently, wewill investigate the usage of dedicated optimization
techniques. We also intend to explore how our algorithms should
be adapted to progressively answer non-monotonic queries, make
the partitioning scheme incremental, and render PING amenable
to interactive, user-centered KG exploration. The idea is to pro-
vide answers based on specific efficiency and accuracy require-
ments. Exploring orthogonal techniques, such as Bloom filters
(to identify levels with relevant answers) and pre-computation
of joins (to boost efficiency) is also an interesting direction.

Also, PING currently considers that datasets are static and
do not regularly update, which might not be true in practice.
As such, we intend to develop an incremental update algorithm
for the existing partitioning scheme. Finally, within PING we
have explored PQA progressing sequentially, through the first
hierarchy levels. However, we could optimize PING to return the
largest/smallest partition first, before processing the remaining
ones. Although PING does not require a smart client, experi-
mentally comparing it with approaches that do, would further
highlight the benefits of our approach.

ACKNOWLEDGMENTS

The work reported in this paper is implemented in the framework
of H.F.R.I call “Basic research Financing (Horizontal support of
all Sciences)” under the National Recovery and Resilience Plan
“Greece 2.0” funded by the European Union – NextGenerationEU
(H.F.R.I. Project Number: 16819).

REFERENCES

[1] [n.d.]. W3C Recommendation, SPARQL Query Language for RDF. https:
//www.w3.org/TR/rdf-sparql-query/. Accessed: 2019-10-09.

[2] Giannis Agathangelos, Georgia Troullinou, Haridimos Kondylakis, Kostas
Stefanidis, and Dimitris Plexousakis. 2018. RDF Query Answering Using
Apache Spark: Review and Assessment. In 34th IEEE International Conference

on Data Engineering Workshops, ICDE Workshops 2018, Paris, France, April

16-20, 2018. IEEE Computer Society, 54–59. https://doi.org/10.1109/ICDEW.
2018.00016

[3] Julien Aimonier-Davat, Hala Skaf-Molli, Pascal Molli, Arnaud Grall, and
Thomas Minier. 2022. Online approximative SPARQL query processing for
COUNT-DISTINCT queries with web preemption. Semantic Web 13, 4 (2022),
735–755. https://doi.org/10.3233/SW-222842

[4] Pritom Saha Akash, Wei-Cheng Lai, and Po-Wen Lin. 2022. Online
Aggregation based Approximate Query Processing: A Literature Survey.
CoRR abs/2204.07125 (2022). https://doi.org/10.48550/ARXIV.2204.07125
arXiv:2204.07125

[5] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-
Cyrille Ngonga Ngomo. 2022. A survey of RDF stores & SPARQL en-
gines for querying knowledge graphs. VLDB J. 31, 3 (2022), 1–26. https:
//doi.org/10.1007/s00778-021-00711-3

[6] Wim Martens Angela Bonifati and Thomas Timm. 2020. An analytical study
of large SPARQL query logs. VLDB J. 29, 2-3 (2020), 655–679.

[7] Amr Azzam, Javier D. Fernández, Maribel Acosta, Martin Beno, and Axel
Polleres. 2020. SMART-KG: Hybrid Shipping for SPARQL Querying on the
Web. In WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020,
Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen (Eds.). ACM /
IW3C2, 984–994. https://doi.org/10.1145/3366423.3380177

[8] Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Au-
rélien Lemay, and Nicky Advokaat. 2017. gMark: Schema-Driven Generation
of Graphs and Queries. IEEE Trans. Knowl. Data Eng. 29, 4 (2017), 856–869.
https://doi.org/10.1109/TKDE.2016.2633993

[9] Angela Bonifati, Stefania Dumbrava, Haridimos Kondylakis, Georgia Troulli-
nou, and Giannis Vassiliou. 2023. PING: Progressive Querying on RDF Graphs.
In ISWC (Posters/Demos/Industry) (CEUR Workshop Proceedings), Vol. 3632.
CEUR-WS.org.

[10] Angela Bonifati, WimMartens, and Thomas Timm. 2019. Navigating the Maze
of Wikidata Query Logs. In The World Wide Web Conference, WWW 2019, San

Francisco, CA, USA, May 13-17, 2019. ACM, 127–138.
[11] Maxime Buron, François Goasdoué, Ioana Manolescu, Tayeb Merabti, and

Marie-Laure Mugnier. 2020. Revisiting RDF storage layouts for efficient query
answering. In SSWS@ISWC (CEUR Workshop Proceedings), Vol. 2757. CEUR-
WS.org, 17–32.

[12] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos,
Ioana Manolescu, Georgia Troullinou, and Mussab Zneika. 2019. Summarizing
semantic graphs: a survey. VLDB J. 28, 3 (2019), 295–327.

[13] Peter Dolog, Heiner Stuckenschmidt, Holger Wache, and Jörg Diederich. 2009.
Relaxing RDF queries based on user and domain preferences. J. Intell. Inf. Syst.
33, 3 (2009), 239–260. https://doi.org/10.1007/s10844-008-0070-7

[14] Stefania Dumbrava, Angela Bonifati, Amaia Nazabal Ruiz Diaz, and Romain
Vuillemot. 2018. Approximate Evaluation of Label-Constrained Reachability
Queries. CoRR abs/1811.11561 (2018).

[15] Stefania Dumbrava, Angela Bonifati, Amaia Nazabal Ruiz Diaz, and Romain
Vuillemot. 2019. Approximate Querying on Property Graphs. In SUM (Lecture

Notes in Computer Science), Vol. 11940. Springer, 250–265.
[16] Orri Erling, Alex Averbuch, Josep Lluís Larriba-Pey, Hassan Chafi, Andrey

Gubichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The
LDBC Social Network Benchmark: Interactive Workload. In SIGMOD Confer-

ence. ACM, 619–630.
[17] Wenfei Fan, Yuanhao Li, Muyang Liu, and Can Lu. 2022. A Hierarchical

Contraction Scheme for Querying Big Graphs. In SIGMOD Conference. ACM,
1726–1740.

[18] Valeria Fionda, Giuseppe Pirrò, and Mariano P. Consens. 2019. Querying
knowledge graphs with extended property paths. Semantic Web 10, 6 (2019),
1127–1168.

[19] Riccardo Frosini, Andrea Calì, Alexandra Poulovassilis, and Peter T. Wood.
2017. Flexible query processing for SPARQL. Semantic Web 8, 4 (2017), 533–
563.

[20] Xinrui Ge, Jia Yu, Hanlin Zhang, Jianli Bai, Jianxi Fan, and Neal N. Xiong. 2022.
SPPS: A Search Pattern Privacy System for Approximate Shortest Distance
Query of Encrypted Graphs in IIoT. IEEE Trans. Syst. Man Cybern. Syst. 52, 1
(2022), 136–150. https://doi.org/10.1109/TSMC.2021.3073542

[21] Damien Graux, Louis Jachiet, Pierre Genevès, and Nabil Layaïda. 2016. SPAR-
QLGX in Action: Efficient Distributed Evaluation of SPARQL with Apache

117

Spark. In ISWC.
[22] Liang He, Bin Shao, Yatao Li, Huanhuan Xia, Yanghua Xiao, Enhong Chen,

and Liang Chen. 2017. Stylus: A Strongly-Typed Store for Serving Massive
RDF Data. Proc. VLDB Endow. 11, 2 (2017), 203–216. https://doi.org/10.14778/
3149193.3149200

[23] Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. 2008. Query
Relaxation in RDF. J. Data Semant. 10 (2008), 31–61. https://doi.org/10.1007/
978-3-540-77688-8_2

[24] Haridimos Kondylakis and Dimitris Plexousakis. 2011. Exelixis: evolving
ontology-based data integration system. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, SIGMOD 2011, Athens, Greece,

June 12-16, 2011, Timos K. Sellis, Renée J. Miller, Anastasios Kementsiet-
sidis, and Yannis Velegrakis (Eds.). ACM, 1283–1286. https://doi.org/10.1145/
1989323.1989477

[25] Haridimos Kondylakis and Dimitris Plexousakis. 2011. Ontology Evolution
in Data Integration: Query Rewriting to the Rescue. In Conceptual Modeling -

ER 2011, 30th International Conference, ER 2011, Brussels, Belgium, October 31 -

November 3, 2011. Proceedings (Lecture Notes in Computer Science), Manfred A.
Jeusfeld, Lois M. L. Delcambre, and Tok Wang Ling (Eds.), Vol. 6998. Springer,
393–401. https://doi.org/10.1007/978-3-642-24606-7_29

[26] Haridimos Kondylakis and Dimitris Plexousakis. 2012. Ontology Evolution:
Assisting Query Migration. In Conceptual Modeling - 31st International Con-

ference ER 2012, Florence, Italy, October 15-18, 2012. Proceedings (Lecture Notes

in Computer Science), Paolo Atzeni, David W. Cheung, and Sudha Ram (Eds.),
Vol. 7532. Springer, 331–344. https://doi.org/10.1007/978-3-642-34002-4_26

[27] Kaiyu Li and Guoliang Li. 2018. Approximate Query Processing: What is New
and Where to Go? - A Survey on Approximate Query Processing. Data Sci.
Eng. 3, 4 (2018), 379–397. https://doi.org/10.1007/S41019-018-0074-4

[28] Xi Liang, Stavros Sintos, Zechao Shang, and Sanjay Krishnan. 2021. Combining
Aggregation and Sampling (Nearly) Optimally for Approximate Query Process-
ing. In SIGMOD ’21: International Conference on Management of Data, Virtual

Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava (Eds.). ACM, 1129–1141. https://doi.org/10.1145/3448016.
3457277

[29] Amgad Madkour, Ahmed M. Aly, and Walid G. Aref. 2018. WORQ: Workload-
Driven RDF Query Processing. In ISWC. 583–599.

[30] Marios Meimaris and George Papastefanatos. 2018. Hierarchical Characteristic
Set Merging for Optimizing SPARQL Queries in Heterogeneous RDF. CoRR
abs/1809.02345 (2018).

[31] Xiangfu Meng, Zong Min Ma, and Li Yan. 2008. Providing Flexible Queries
over Web Databases. In KES (2) (Lecture Notes in Computer Science), Vol. 5178.
Springer, 601–606.

[32] ThomasMinier, Hala Skaf-Molli, and PascalMolli. 2019. SaGe:Web Preemption
for Public SPARQL Query Services. In The World Wide Web Conference, WWW

2019, San Francisco, CA, USA, May 13-17, 2019, Ling Liu, Ryen W. White, Amin
Mantrach, Fabrizio Silvestri, Julian J. McAuley, Ricardo Baeza-Yates, and Leila
Zia (Eds.). ACM, 1268–1278. https://doi.org/10.1145/3308558.3313652

[33] Thomas Neumann and Guido Moerkotte. 2011. Characteristic sets: Accurate
cardinality estimation for RDF queries with multiple joins. In ICDE. IEEE
Computer Society, 984–994.

[34] Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang. 2018.
VerdictDB: Universalizing Approximate Query Processing. In Proceedings of

the 2018 International Conference on Management of Data, SIGMOD Conference

2018, Houston, TX, USA, June 10-15, 2018, GautamDas, ChristopherM. Jermaine,
and Philip A. Bernstein (Eds.). ACM, 1461–1476. https://doi.org/10.1145/
3183713.3196905

[35] Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. 2018. AQP++:
Connecting Approximate Query Processing With Aggregate Precomputation
for Interactive Analytics. In SIGMOD Conference. ACM, 1477–1492.

[36] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2006. Semantics and
Complexity of SPARQL. In ISWC (Lecture Notes in Computer Science), Vol. 4273.
Springer, 30–43.

[37] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. 2009. Semantics and
complexity of SPARQL. ACM Trans. Database Syst. 34, 3 (2009), 16:1–16:45.

[38] François Picalausa, Yongming Luo, George H. L. Fletcher, Jan Hidders, and
Stijn Vansummeren. 2012. A Structural Approach to Indexing Triples. In
ESWC (Lecture Notes in Computer Science), Vol. 7295. Springer, 406–421.

[39] Yehoshua Sagiv andMihalis Yannakakis. 1980. Equivalences Among Relational
Expressions with the Union and Difference Operators. J. ACM 27, 4 (1980),
633–655.

[40] Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar,
and et al. 2021. The future is big graphs: a community view on graph processing
systems. Commun. ACM 64, 9 (2021), 62–71.

[41] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
Feasible: A feature-based sparql benchmark generation framework. In The Se-

mantic Web-ISWC 2015: 14th International Semantic Web Conference, Bethlehem,

PA, USA, October 11-15, 2015, Proceedings, Part I 14. Springer, 52–69.
[42] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg

Lausen. 2016. S2RDF: RDF Querying with SPARQL on Spark. PVLDB 9, 10
(2016), 804–815.

[43] Arnaud Soulet and Fabian M. Suchanek. 2019. Anytime Large-Scale Ana-
lytics of Linked Open Data. In ISWC (1) (Lecture Notes in Computer Science),
Vol. 11778. Springer, 576–592.

[44] Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math. 5, 2 (1955), 285 – 309.

[45] Thanh Tran, Günter Ladwig, and Sebastian Rudolph. 2013. Managing Struc-
tured and Semistructured RDF Data Using Structure Indexes. IEEE Trans.

Knowl. Data Eng. 25, 9 (2013), 2076–2089.
[46] Ruud van Bakel, Teodor Aleksiev, Daniel Daza, Dimitrios Alivanistos, and

Michael Cochez. 2021. Approximate Knowledge Graph Query Answer-
ing: From Ranking to Binary Classification. CoRR abs/2102.11389 (2021).
arXiv:2102.11389 https://arxiv.org/abs/2102.11389

[47] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen,
Laurens De Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert.
2016. Triple Pattern Fragments: A low-cost knowledge graph interface for the
Web. J. Web Semant. 37-38 (2016), 184–206. https://doi.org/10.1016/j.websem.
2016.03.003

[48] W3C. [n.d.]. Resource Description Framework. http://www.w3.org/RDF/.
[49] HongyaWang, Zeng Zhao, Kaixiang Yang, Hui Song, and Yingyuan Xiao. 2021.

Approximate Nearest Neighbor Search Using Query-Directed Dense Graph. In
DASFAA (Workshops) (Lecture Notes in Computer Science), Vol. 12680. Springer,
429–444.

[50] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr.
2018. RDF Data Storage and Query Processing Schemes: A Survey. ACM

Comput. Surv. 51, 4, Article 84 (sep 2018), 36 pages. https://doi.org/10.1145/
3177850

[51] Haiwei Zhang, Yuanyuan Duan, Xiaojie Yuan, and Ying Zhang. 2014. ASSG:
Adaptive structural summary for RDF graph data. In ISWC (Posters & Demos)

(CEUR Workshop Proceedings), Vol. 1272. CEUR-WS.org, 233–236.

118

